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each other. This is most strikingly the case when so-called mushy regions exist,
and these are described in detail in a later chapter, although no real mention is
made of their physical interpretation. However, the book ends with a change
of emphasis, with descriptions of time-periodic solutions (as might occur, say,
with thermostats), approximate solutions to some ingot solidification problems,

and some joint work on the wide-open question of alloy solidification, which

leads inevitably to the study of vector Stefan problems.1 The final pages contain

some enigmatic statements about the thermodynamic basis for theories of alloy
solidification.

I hope it is clear from the above that this book will be extremely valuable

to all mathematicians working in free-boundary problems because it collects all

the seminal work in the area carried out by the author over the past fifteen
years. However, the book does not purport to provide an overview of the sub-

ject, for which many conference proceedings or the book of Crank (not even
mentioned here) should be consulted. The first-ever English text on the Stefan

problem by Rubinstein does receive brief mention, but I was saddened to see a
one-dimensional theory described without references to that pioneering work.
Indeed, it would have been helpful if the subjectiveness of the book had been
stressed in the introduction.

Notwithstanding these criticisms of style, Professor Meirmanov and his trans-

lators, Marek Niezgodka and Anna Crowley, are to be congratulated on having

produced this admirable record of the mathematical heart of the Stefan prob-
lem.

John Ockendon

Mathematical Institute, Oxford University
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In 1920 when G. H. Hardy discovered the inequality

(1>     {f|:U*HW,''£A{iW^r-
1 < p < oo, in an attempt to simplify the proofs of Hubert's double series the-

orem, he could hardly have foreseen the profound influence this inequality and

its variants and generalizations would have on the development of many areas

in analysis. In Fourier analysis, for example, it is the key factor in the proof
of the Hardy-Littlewood maximal theorem; and the proof of the Marcinkiewicz

theorem on the interpolation of operators requires, in a significant way, only a

'A new kind of vector Stefan problem has recently gained prominence in the macroscopic theory

of superconductivity.
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mild extension of (1). Indeed, the inequality and its generalizations are some

of the basic tools in modern interpolation theory—the real method—and are

indispensable in the study of function spaces.

If w and v are weight functions and Tf(x) = /* /, then a weighted gen-

eralization of ( 1 ) is the inequality

(2) /   w\Tf\\      <C    /   v\f\n      ,        -oo<a<b<oo,

where C > 0 is a constant independent of /. The question of finding weight

conditions which are equivalent to the boundedness and compactness of T

on weighted Lebesgue spaces has drawn considerable attention during the last
twenty-five years and has now largely been solved. Of course, (2) with u = Tf

is also a statement about derivatives, and its «-dimensional analogue raises the

following questions: Under what choices of functions u, under what conditions

on the domain fiel", and on the weight functions w, v\, v2, ... , v„ is the
inequality

x) p
Vi(x)dx(3)        {/n»WI«WI«^}">sc{t/0|^

satisfied? This is the central question discussed by Opic and Kufner in the book

under review. Note that for 1 < p < n , 1 < q < np/(n - p), w - v\ — v2 =

••' — vH — l, and U € Cq°(Q) , Q a bounded domain with Lipschitz boundary,
this is Sobolev's inequality; while in the case p = \, q = n/(n - 1) with the

same choice of function and weights, (3) is known as Gagliardo inequality.

Similarly, if p — q = 2, Q a bounded domain where Green's formula holds,

one obtains Friedrichs's inequality; while for functions u whose mean value

over fi vanishes, the estimate is called Poincaré inequality. These inequalities

then are collectively denoted by the authors as Hardy-type inequalities, and it

is shown that they are instrumental in the study of PDEs and weighted Sobolev
function spaces.

The monograph begins with a detailed study of the one-dimensional inequal-

ity (2) and its dual. It traces the recent history of the inequality carefully and

provides the two basically different proofs where weight conditions are shown to

be equivalent to (2) with good control on the best constants. One of the weight

conditions is based on the solution of a differential equation, while the other is

in terms of certain integral conditions which also characterize the inequality in

the index range 0 < q < 1, p > 1. Specifically, for 1 < p < q < oo , the second

approach shows that (2) is equivalent to

(4) sup  I /   w I      ( /   v1-" )      <oo;
a<x<b

while the condition

1/? / fX N i/?'

(5)        f (/»   il?1-'') v(xY p' dx < oo,

\/r = \/q - \/p is equivalent to (2) in the range 0<g<,p<oo,/7>l

r
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It is interesting to note here that (5) is also equivalent to the compactness of

the operator T: 1% -> L^ if 1 < q < p < oo, although (4) alone is not enough

to ensure compactness of T in the index range 1 < p < q < oo . Still, in the one-

dimensional case, the authors discuss the boundedness of the Riemann-Liouville

fractional integral operator on weighted Lebesgue spaces and apply it to obtain

weight characterizations for inequalities involving higher-order derivatives.

The characterization of weights in terms of capacity conditions for which (3)

holds with u € Cq°(Q) for 1 < p, q < oo has already been obtained by Maz'ja

and others. In this book the authors are content to provide weight conditions

which primarily are only sufficient for (3) and the domains are often special.
They are related to the one-dimensional weighted Hardy inequalities and have

the advantage that they are easier to verify. In the treatment of continuous

and compact embeddings of weighted Sobolev spaces into weighted Z/-spaces,

the weights d(x) = dist(x, fi) play a special role. For such weights and their

powers, the index conditions for the embeddings are sharp.

The nominal aim of the monograph is to provide a partial survey and to

collect recent results regarding Hardy-type inequalities. In this the authors have

succeeded. The book is very carefully crafted, providing proofs in great detail

and a wealth of representative weight examples. Sometimes it seems, however,

that the desire for detail and precision led to an excessive amount of notation

and unnecessary typography, which may be distracting for some readers. For

example, the introduction of nine notations for certain classes of absolutely

continuous functions seems too much, and the repeated writing of constants

with their dependence on parameters such as At — A^{a, b, w, v, p, q) (and

similarly with Ar, A*r, Bl, etc.) unnecessary. These are, however, minor

matters and preferable to an overly informal presentation.

While the monograph is not exhaustive in its treatment of Hardy-type in-

equalities, much material presented here is available only in the primary lit-
erature. It is a welcome addition to the literature and can be recommended

not only to those who wish to learn about the inequality as it pertains to func-

tion theory but also to those who study weighted inequalities in other areas of
analysis.

References

1. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge
and New York, 1959.

2. A. Kufner, O. John, and S. Fucik, Function spaces, Noordhoff Intern. Publ. Leyden, Gronin-

gen, 1977.

3. V. G. Maz'ja, Sobolev spaces, Springer-Verlag, Berlin, 1985.

Hans P. Heinig
McMaster University, Ontario


