Iteration of meromorphic functions
Author:
Walter Bergweiler
Journal:
Bull. Amer. Math. Soc. 29 (1993), 151-188
MSC (2000):
Primary 30D05; Secondary 58F23
DOI:
https://doi.org/10.1090/S0273-0979-1993-00432-4
MathSciNet review:
1216719
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Jan M. Aarts and Lex G. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338 (1993), no. 2, 897–918. MR 1182980, https://doi.org/10.1090/S0002-9947-1993-1182980-3
- [2] Lars Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), no. 1, 157–194 (German). MR 1555403, https://doi.org/10.1007/BF02420945
- [3] -, Conformal invariants, McGraw-Hill, New York, 1973.
- [4] I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146–153. MR 107015, https://doi.org/10.1007/BF01181396
- [5] I. N. Baker, Some entire functions with fixpoints of every order, J. Austral. Math. Soc. 1 (1959/1961), 203–209. MR 0114007
- [6] I. N. Baker, Some entire functions with fixpoints of every order, J. Austral. Math. Soc. 1 (1959/1961), 203–209. MR 0114007
- [7] Irvine Noel Baker, Multiply connected domains of normality in iteration theory, Math. Z. 81 (1963), 206–214. MR 153842, https://doi.org/10.1007/BF01111543
- [8] I. N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), 615–622. MR 169989, https://doi.org/10.1112/jlms/s1-39.1.615
- [9] I. N. Baker, Sets of non-normality in iteration theory, J. London Math. Soc. 40 (1965), 499–502. MR 180668, https://doi.org/10.1112/jlms/s1-40.1.499
- [10] I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252–256. MR 226009, https://doi.org/10.1007/BF01110294
- [11] I. N. Baker, Limit functions and sets of non-normality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I No. 467 (1970), 11. MR 0264071
- [12] I. N. Baker, Completely invariant domains of entire functions, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 33–35. MR 0271344
- [13] I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 277–283. MR 0402044
- [14] I. N. Baker, An entire function which has wandering domains, J. Austral. Math. Soc. Ser. A 22 (1976), no. 2, 173–176. MR 419759, https://doi.org/10.1017/s1446788700015287
- [15] I. N. Baker, The iteration of polynomials and transcendental entire functions, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 4, 483–495. MR 621564
- [16] I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 563–576. MR 759304, https://doi.org/10.1112/plms/s3-49.3.563
- [17] I. N. Baker, Some entire functions with multiply-connected wandering domains, Ergodic Theory Dynam. Systems 5 (1985), no. 2, 163–169. MR 796748, https://doi.org/10.1017/S0143385700002832
- [18] I. N. Baker, Iteration of entire functions: an introductory survey, Lectures on complex analysis (Xian, 1987) World Sci. Publishing, Singapore, 1988, pp. 1–17. MR 996465
- [19] I. N. Baker, Wandering domains for maps of the punctured plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 2, 191–198. MR 951969, https://doi.org/10.5186/aasfm.1987.1204
- [20] I. N. Baker, Infinite limits in the iteration of entire functions, Ergodic Theory Dynam. Systems 8 (1988), no. 4, 503–507. MR 980793, https://doi.org/10.1017/S014338570000465X
- [21] I. N. Baker, J. Kotus, and Lü Yinian, Iterates of meromorphic functions. I, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 241–248. MR 1116639, https://doi.org/10.1017/S014338570000612X
- [22] I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. II. Examples of wandering domains, J. London Math. Soc. (2) 42 (1990), no. 2, 267–278. MR 1083445, https://doi.org/10.1112/jlms/s2-42.2.267
- [23] I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. III. Preperiodic domains, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 603–618. MR 1145612, https://doi.org/10.1017/S0143385700006386
- [24] I. N. Baker, J. Kotus, and Lü Yinian, Iterates of meromorphic functions. IV. Critically finite functions, Results Math. 22 (1992), no. 3-4, 651–656. MR 1189754, https://doi.org/10.1007/BF03323112
- [25] I. N. Baker and P. J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 49–77. MR 752391, https://doi.org/10.5186/aasfm.1984.0903
- [26] Béla Barna, Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischen Gleichungen. II, Publ. Math. Debrecen 4 (1956), 384–397 (German). MR 78956
- [27] Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089
- [28] Walter Bergweiler, On the number of fix-points of iterated entire functions, Arch. Math. (Basel) 55 (1990), no. 6, 558–563. MR 1078277, https://doi.org/10.1007/BF01191691
- [29] Walter Bergweiler, Periodic points of entire functions: proof of a conjecture of Baker, Complex Variables Theory Appl. 17 (1991), no. 1-2, 57–72. MR 1123803, https://doi.org/10.1080/17476939108814495
- [30] Walter Bergweiler, On the existence of fixpoints of composite meromorphic functions, Proc. Amer. Math. Soc. 114 (1992), no. 3, 879–880. MR 1091176, https://doi.org/10.1090/S0002-9939-1992-1091176-X
- [31] -, Newton's method and a class of meromorphic functions without wandering domains, Ergodic Theory Dynamical Systems (to appear).
- [32] W. Bergweiler, F. von Haeseler, H. Kriete, H.-G. Meier, and N. Terglane, Newton's method for meromorphic functions, Proceedings of the conference "Complex analysis and its applications", Hong Kong (to appear).
- [33] Walter Bergweiler, Mako Haruta, Hartje Kriete, Hans-Günter Meier, and Norbert Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 369–375. MR 1234740
- [34] Walter Bergweiler and Steffen Rohde, Omitted values in domains of normality, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1857–1858. MR 1249869, https://doi.org/10.1090/S0002-9939-1995-1249869-X
- [35] Walter Bergweiler and Norbert Terglane, Weakly repelling fixpoints and the connectivity of wandering domains, Trans. Amer. Math. Soc. 348 (1996), no. 1, 1–12. MR 1327252, https://doi.org/10.1090/S0002-9947-96-01511-5
- [36] P. Bhattacharyya, Iteration of analytic functions, Ph.D. thesis, Univ. of London, 1969.
- [37] Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, https://doi.org/10.1090/S0273-0979-1984-15240-6
- [38] L. E. Böttcher, Beiträge zu der Theorie der Iterationsrechnung, Inaugural dissertation, Leipzig, 1898.
- [39] D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 21 (1989), no. 1, 1–35. MR 967787, https://doi.org/10.1112/blms/21.1.1
- [40] Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). MR 194595, https://doi.org/10.1007/BF02591353
- [41] Witold D. Bula and Lex G. Oversteegen, A characterization of smooth Cantor bouquets, Proc. Amer. Math. Soc. 108 (1990), no. 2, 529–534. MR 991691, https://doi.org/10.1090/S0002-9939-1990-0991691-9
- [42] Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383
- [43] Nikolaj Tschebotareff, Über die Realität von Nullstellen ganzer transzendenter Funktionen, Math. Ann. 99 (1928), no. 1, 660–686 (German). MR 1512472, https://doi.org/10.1007/BF01459119
- [44] Chi Tai Chuang, A simple proof of a theorem of Fatou on the iteration and fix-points of transcendental entire functions, Analytic functions of one complex variable, Contemp. Math., vol. 48, Amer. Math. Soc., Providence, RI, 1985, pp. 65–69. MR 838099, https://doi.org/10.1090/conm/048/838099
- [45] J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 75–92. MR 0271352
- [46] H. Cremer, Über die Iteration rationaler Funktionen, Jahresber. Deutsche Math.-Ver. 33 (1925), 185-210.
- [47] -, Zum Zentrumsproblem, Math. Ann. 98 (1926), 151-163.
- [48] -, Über die Schrödersche Funktionalgleichung und das Schwarzsche Eckenabbildungsproblem, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 84 (1932), 291-324.
- [49] Hubert Cremer, Über die Häufigkeit der Nichtzentren, Math. Ann. 115 (1938), no. 1, 573–580 (German). MR 1513203, https://doi.org/10.1007/BF01448957
- [50] Robert L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 167–171. MR 741732, https://doi.org/10.1090/S0273-0979-1984-15253-4
- [51] Robert L. Devaney, Structural instability of 𝑒𝑥𝑝(𝑧), Proc. Amer. Math. Soc. 94 (1985), no. 3, 545–548. MR 787910, https://doi.org/10.1090/S0002-9939-1985-0787910-2
- [52] Robert L. Devaney, Dynamics of entire maps, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 221–228. MR 1102716
- [53] -, An introduction to chaotic dynamical systems, second ed., Addison-Wesley, Redwood City, 1989.
- [54] Robert L. Devaney, Film and video as a tool in mathematical research, Math. Intelligencer 11 (1989), no. 2, 33–38. MR 994962, https://doi.org/10.1007/BF03023821
- [55] Robert L. Devaney, Dynamics of simple maps, Chaos and fractals (Providence, RI, 1988) Proc. Sympos. Appl. Math., vol. 39, Amer. Math. Soc., Providence, RI, 1989, pp. 1–24. MR 1010233, https://doi.org/10.1090/psapm/039/1010233
- [56] Robert L. Devaney, 𝑒^{𝑧}: dynamics and bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1 (1991), no. 2, 287–308. MR 1120198, https://doi.org/10.1142/S0218127491000221
- [57] Robert L. Devaney and Marilyn B. Durkin, The exploding exponential and other chaotic bursts in complex dynamics, Amer. Math. Monthly 98 (1991), no. 3, 217–233. MR 1093952, https://doi.org/10.2307/2325024
- [58] Robert L. Devaney (ed.), Complex dynamical systems, Proceedings of Symposia in Applied Mathematics, vol. 49, American Mathematical Society, Providence, RI, 1994. The mathematics behind the Mandelbrot and Julia sets; Lecture notes prepared for the short course held at the Annual Meeting of the American Mathematical Society, Cincinnati, Ohio, January 10–11, 1994; AMS Short Course Lecture Notes. MR 1315531
- [59] Robert L. Devaney and Linda Keen, Dynamics of meromorphic maps: maps with polynomial Schwarzian derivative, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 55–79. MR 985854
- [60] Robert L. Devaney and Michał Krych, Dynamics of 𝑒𝑥𝑝(𝑧), Ergodic Theory Dynam. Systems 4 (1984), no. 1, 35–52. MR 758892, https://doi.org/10.1017/S014338570000225X
- [61] Robert L. Devaney and Folkert Tangerman, Dynamics of entire functions near the essential singularity, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 489–503. MR 873428, https://doi.org/10.1017/S0143385700003655
- [62] Adrien Douady and John Hamal Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126 (French, with English summary). MR 651802
- [63] -, Étude dynamique des polynômes complexes. I & II, Publ. Math. Orsay 84-02 (1984) & 85-04 (1985).
- [64] Nasser Doual, James L. Howland, and Rémi Vaillancourt, Selective solutions to transcendental equations, Comput. Math. Appl. 22 (1991), no. 9, 61–76. MR 1136170, https://doi.org/10.1016/0898-1221(91)90207-K
- [65] Albert Edrei, Meromorphic functions with three radially distributed values, Trans. Amer. Math. Soc. 78 (1955), 276–293. MR 67982, https://doi.org/10.1090/S0002-9947-1955-0067982-9
- [66] A. È. Erëmenko, On the iteration of entire functions, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 339–345. MR 1102727
- [67] A. È. Erëmenko and M. Yu. Lyubich, Iterations of entire functions, Dokl. Akad. Nauk SSSR 279 (1984), no. 1, 25–27 (Russian). MR 769199
- [68] A. È. Erëmenko and M. Ju. Ljubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2) 36 (1987), no. 3, 458–468. MR 918638, https://doi.org/10.1112/jlms/s2-36.3.458
- [69] A. È. Erëmenko and M. Yu. Lyubich, The dynamics of analytic transformations, Algebra i Analiz 1 (1989), no. 3, 1–70 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 3, 563–634. MR 1015124
- [70] A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102
- [71] P. Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920), 33-94, 208-314.
- [72] -, Sur l'itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337-360.
- [73] Marguerite Flexor and Pierrette Sentenac, Algorithmes de Newton généralisés, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 14, 445–448 (French, with English summary). MR 991879
- [74] Étienne Ghys, Lisa R. Goldberg, and Dennis P. Sullivan, On the measurable dynamics of 𝑧\mapsto𝑒^{𝑧}, Ergodic Theory Dynam. Systems 5 (1985), no. 3, 329–335. MR 805833, https://doi.org/10.1017/S0143385700002984
- [75] Lisa R. Goldberg and Linda Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183–192. MR 857196, https://doi.org/10.1017/S0143385700003394
- [76] F. von Haeseler and H. Kriete, The relaxed Newton's method for polynomials, preprint.
- [77] F. von Haeseler and H.-O. Peitgen, Newton’s method and complex dynamical systems, Acta Appl. Math. 13 (1988), no. 1-2, 3–58. MR 979816, https://doi.org/10.1007/BF00047501
- [78] M. Haruta, The dynamics of Newton's method on the exponential function in the complex domain, Ph.D. thesis, Boston Univ., 1992.
- [79] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- [80] W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), no. 3, 317–358. MR 385095, https://doi.org/10.4153/CMB-1974-064-0
- [81] Michael-R. Herman, Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann, Bull. Soc. Math. France 112 (1984), no. 1, 93–142 (French, with English summary). MR 771920
- [82] Michael-R. Herman, Are there critical points on the boundaries of singular domains?, Comm. Math. Phys. 99 (1985), no. 4, 593–612. MR 796014
- [83] A. Hinkkanen, Iteration and the zeros of the second derivative of a meromorphic function, Proc. London Math. Soc. (3) 65 (1992), no. 3, 629–650. MR 1182104, https://doi.org/10.1112/plms/s3-65.3.629
- [84] -, On the size of Julia sets, preprint.
- [85] James Lucien Howland and Rémi Vaillancourt, Attractive cycles in the iteration of meromorphic functions, Numer. Math. 46 (1985), no. 3, 323–337. MR 791694, https://doi.org/10.1007/BF01389489
- [86] James L. Howland, Alan Thompson, and Rémi Vaillancourt, On the dynamics of a meromorphic function, Appl. Math. Notes 15 (1990), 7–37. MR 1102745
- [87] Gerhard Jank and Lutz Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, UTB für Wissenschaft: Grosse Reihe. [UTB for Science: Large Series], Birkhäuser Verlag, Basel, 1985 (German). MR 820202
- [88] H. Th. Jongen, P. Jonker, and F. Twilt, The continuous, desingularized Newton method for meromorphic functions, Acta Appl. Math. 13 (1988), no. 1-2, 81–121. MR 979818, https://doi.org/10.1007/BF00047503
- [89] G. Julia, Sur l'itération des fonctions rationelles, J. Math. Pures Appl. (7) 4 (1918), 47-245.
- [90] -, Sur des problèmes concernant l'itération des fonctions rationelles, C. R. Acad. Sci. Paris Sér. I. Math. 166 (1918), 153-156.
- [91] Linda Keen, Dynamics of holomorphic self-maps of 𝐶*, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 9–30. MR 955806, https://doi.org/10.1007/978-1-4613-9602-4_2
- [92] Linda Keen, Topology and growth of a special class of holomorphic self-maps of 𝐶*, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 321–328. MR 1007413, https://doi.org/10.1017/S0143385700004995
- [93] Linda Keen, Julia sets, Chaos and fractals (Providence, RI, 1988) Proc. Sympos. Appl. Math., vol. 39, Amer. Math. Soc., Providence, RI, 1989, pp. 57–74. MR 1010236, https://doi.org/10.1090/psapm/039/1010236
- [94] J. Kotus, Iterated holomorphic maps on the punctured plane, Dynamical systems (Sopron, 1985) Lecture Notes in Econom. and Math. Systems, vol. 287, Springer, Berlin, 1987, pp. 10–28. MR 1120038, https://doi.org/10.1007/978-3-662-00748-8_2
- [95] Janina Kotus, The domains of normality of holomorphic self-maps of 𝐶*, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), no. 2, 329–340. MR 1087340, https://doi.org/10.5186/aasfm.1990.1519
- [96]
B. Krauskopf, Convergence of Julia sets in the approximation of
by
, Internat. J. Bifurcation Chaos (to appear).
- [97] H. Kriete, On the efficiency of relaxed Newton's method, Proceedings of the conference "Complex analysis and its applications", Hong Kong (to appear).
- [98] S. Lattès, Sur l'itération des substitutions rationelles et les fonctions de Poincaré, C. R. Acad. Sci. Paris Ser. I Math. 166 (1918), 26-28 (Errata: p. 88).
- [99] O. Lehto and K. I. Virtanen, Quasikonforme Abbildungen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band, Springer-Verlag, Berlin-New York, 1965 (German). MR 0188434
- [100] M. Yu. Lyubich, Dynamics of rational transformations: topological picture, Uspekhi Mat. Nauk 41 (1986), no. 4(250), 35–95, 239 (Russian). MR 863874
- [101] M. Yu. Lyubich, Measurable dynamics of an exponential, Dokl. Akad. Nauk SSSR 292 (1987), no. 6, 1301–1304 (Russian). MR 880612
- [102] M. Yu. Lyubich, The measurable dynamics of the exponential, Sibirsk. Mat. Zh. 28 (1987), no. 5, 111–127 (Russian). MR 924986
- [103] Curt McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), no. 1, 329–342. MR 871679, https://doi.org/10.1090/S0002-9947-1987-0871679-3
- [104] P. M. Makienko, Iterations of analytic functions in 𝐶*, Dokl. Akad. Nauk SSSR 297 (1987), no. 1, 35–37 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 3, 418–420. MR 916928
- [105] R. M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459-467.
- [106] John C. Mayer, An explosion point for the set of endpoints of the Julia set of 𝜆exp(𝑧), Ergodic Theory Dynam. Systems 10 (1990), no. 1, 177–183. MR 1053806, https://doi.org/10.1017/S0143385700005460
- [107] Hans-Günter Meier, The relaxed Newton-iteration for rational functions: the limiting case, Complex Variables Theory Appl. 16 (1991), no. 4, 239–260. MR 1105199, https://doi.org/10.1080/17476939108814482
- [108] John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- [109] Michał Misiurewicz, On iterates of 𝑒^{𝑧}, Ergodic Theory Dynamical Systems 1 (1981), no. 1, 103–106. MR 627790, https://doi.org/10.1017/s014338570000119x
- [110] P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthiers-Villars, Paris, 1927.
- [111] Rolf Nevanlinna, Analytic functions, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. MR 0279280
- [112] H.-O. Peitgen and P. H. Richter, The beauty of fractals, Springer-Verlag, Berlin, 1986. Images of complex dynamical systems. MR 852695
- [113] R. Pérez-Marco, Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz), Sém. Bourbaki 753 (1992).
- [114] Hans Rådström, On the iteration of analytic functions, Math. Scand. 1 (1953), 85–92. MR 56702, https://doi.org/10.7146/math.scand.a-10367
- [115] Mary Rees, The exponential map is not recurrent, Math. Z. 191 (1986), no. 4, 593–598. MR 832817, https://doi.org/10.1007/BF01162349
- [116] J. F. Ritt, On the iteration of rational functions, Trans. Amer. Math. Soc. 21 (1920), no. 3, 348–356. MR 1501149, https://doi.org/10.1090/S0002-9947-1920-1501149-6
- [117] Paul Charles Rosenbloom, L’itération des fonctions entières, C. R. Acad. Sci. Paris 227 (1948), 382–383 (French). MR 26691
- [118] David Ruelle, Elements of differentiable dynamics and bifurcation theory, Academic Press, Inc., Boston, MA, 1989. MR 982930
- [119] Carl Ludwig Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607–612. MR 7044, https://doi.org/10.2307/1968952
- [120] M. Viana da Silva, The differentiability of the hairs of 𝑒𝑥𝑝(𝑍), Proc. Amer. Math. Soc. 103 (1988), no. 4, 1179–1184. MR 955004, https://doi.org/10.1090/S0002-9939-1988-0955004-1
- [121] Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140
- [122] -, The connectivity of the Julia set and fixed point, preprint IHES/M/90/37, Institut des Hautes Études Scientifiques, 1990.
- [123] Steve Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 87–121. MR 799791, https://doi.org/10.1090/S0273-0979-1985-15391-1
- [124] Gwyneth M. Stallard, Entire functions with Julia sets of zero measure, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 3, 551–557. MR 1068456, https://doi.org/10.1017/S0305004100069437
- [125] Gwyneth M. Stallard, A class of meromorphic functions with no wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 211–226. MR 1139794, https://doi.org/10.5186/aasfm.1991.1626
- [126] Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of entire functions, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 769–777. MR 1145621, https://doi.org/10.1017/S0143385700006477
- [127] Norbert Steinmetz, On Sullivan’s classification of periodic stable domains, Complex Variables Theory Appl. 14 (1990), no. 1-4, 211–214. MR 1048721, https://doi.org/10.1080/17476939008814420
- [128] Norbert Steinmetz, Rational iteration, De Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235
- [129] Dennis Sullivan, Itération des fonctions analytiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 9, 301–303 (French, with English summary). MR 658395
- [130] Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, https://doi.org/10.2307/1971308
- [131] -, Quasiconformal homeomorphisms and dynamics III. Topological conjugacy classes of analytic endomorphisms, preprint IHES/M/83/1, Institut des Hautes Etudes Scientifiques, 1983.
- [132] S. Sutherland, Finding roots of complex polynomials with Newton's method, Ph.D. thesis, Boston Univ., 1989.
- [133] Hans Töpfer, Über die Iteration der ganzen transzendenten Funktionen, insbesondere von sin𝑧 und cos𝑧, Math. Ann. 117 (1939), 65–84 (German). MR 1293, https://doi.org/10.1007/BF01450008
- [134] Hans Töpfer, Komplexe Iterationsindizes ganzer und rationaler Funktionen, Math. Ann. 121 (1949), 191–222 (German). MR 31549, https://doi.org/10.1007/BF01329624
- [135] G. Valiron, Lectures on the general theory of integral functions, Édouard Privat, Toulouse, 1923.
- [136] Jian Hua Zheng and Chung-Chun Yang, Further results on fixpoints and zeros of entire functions, Trans. Amer. Math. Soc. 347 (1995), no. 1, 37–50. MR 1179403, https://doi.org/10.1090/S0002-9947-1995-1179403-9
- [137] Zhuan Ye, Structural instability of exponential functions, Trans. Amer. Math. Soc. 344 (1994), no. 1, 379–389. MR 1242788, https://doi.org/10.1090/S0002-9947-1994-1242788-8
- [138] Jean-Christophe Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque 231 (1995), 3–88 (French). Petits diviseurs en dimension 1. MR 1367353
- [139] Jean-Christophe Yoccoz, Linéarisation des germes de difféomorphismes holomorphes de (𝐶,0), C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 1, 55–58 (French, with English summary). MR 929279
- [140] Jian Ying Zhou and Zhong Li, Structural instability of the mapping 𝑧→𝜆exp(𝑧)(𝜆>𝑒⁻¹), Sci. China Ser. A 32 (1989), no. 10, 1153–1163. MR 1057994
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 30D05, 58F23
Retrieve articles in all journals with MSC (2000): 30D05, 58F23
Additional Information
DOI:
https://doi.org/10.1090/S0273-0979-1993-00432-4
Keywords:
Iteration,
meromorphic function,
entire function,
set of normality,
Fatou set,
Julia set,
periodic point,
wandering domain,
Baker domain,
Newton's method
Article copyright:
© Copyright 1993
American Mathematical Society