Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 1568077
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Neal Madras and Gordon Slade
Title: The self-avoiding walk
Additional book information: Birkh\"auser, Boston, 1993, xiv+425 pp., US$64.50. ISBN 3-7643-3589-0.

References [Enhancements On Off] (What's this?)

  • Michael Aizenman, Geometric analysis of $\varphi ^{4}$ fields and Ising models. I, II, Comm. Math. Phys. 86 (1982), no. 1, 1–48. MR 678000
  • Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
  • David Brydges and Thomas Spencer, Self-avoiding walk in $5$ or more dimensions, Comm. Math. Phys. 97 (1985), no. 1-2, 125–148. MR 782962
  • [4]
    P. J. Flory, Principles of polymer chemistry, Cornell Univ. Press, Ithaca, NY, 1953.
  • Jürg Fröhlich, On the triviality of $\lambda \varphi ^{4}_{d}$ theories and the approach to the critical point in $d{>atop (—)}4$ dimensions, Nuclear Phys. B 200 (1982), no. 2, 281–296. MR 643591, DOI 10.1016/0550-3213(82)90088-8
  • J. M. Hammersley and K. W. Morton, Poor man’s Monte Carlo, J. Roy. Statist. Soc. Ser. B 16 (1954), 23–38; discussion 61–75. MR 64475
  • Takashi Hara and Gordon Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour, Comm. Math. Phys. 147 (1992), no. 1, 101–136. MR 1171762
  • Takashi Hara and Gordon Slade, The lace expansion for self-avoiding walk in five or more dimensions, Rev. Math. Phys. 4 (1992), no. 2, 235–327. MR 1174248, DOI 10.1142/S0129055X9200008X
  • Mark Kac, Probability and related topics in physical sciences, Lectures in Applied Mathematics (Proceedings of the Summer Seminar, Boulder, Colorado, vol. 1957, Interscience Publishers, London-New York, 1959. With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol. MR 0102849
  • [10]
    W. Kuhn, Über die Gestalt fadenförmiger Moleküle in Lösungen, Kolloid-Zeitschrift 68 (1934), 2-15.
  • Neal Madras and Alan D. Sokal, Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk, J. Statist. Phys. 47 (1987), no. 3-4, 573–595. MR 894408, DOI 10.1007/BF01007527
  • Elliott W. Montroll, Markoff chains and excluded volume effect in polymer chains, J. Chem. Phys. 18 (1950), 734–743. MR 36468, DOI 10.1063/1.1747735
  • Gordon Slade, The diffusion of self-avoiding random walk in high dimensions, Comm. Math. Phys. 110 (1987), no. 4, 661–683. MR 895223
  • Gordon Slade, Convergence of self-avoiding random walk to Brownian motion in high dimensions, J. Phys. A 21 (1988), no. 7, L417–L420. MR 951038
  • Gordon Slade, The scaling limit of self-avoiding random walk in high dimensions, Ann. Probab. 17 (1989), no. 1, 91–107. MR 972773

  • Review Information:

    Reviewer: Harry Kesten
    Journal: Bull. Amer. Math. Soc. 30 (1994), 104-108