Conformal invariance in two-dimensional percolation
HTML articles powered by AMS MathViewer
- by Robert Langlands, Philippe Pouliot and Yvan Saint-Aubin PDF
- Bull. Amer. Math. Soc. 30 (1994), 1-61 Request permission
References
- Michael Aizenman and David J. Barsky, Sharpness of the phase transition in percolation models, Comm. Math. Phys. 108 (1987), no. 3, 489–526. MR 874906, DOI 10.1007/BF01212322
- S. R. Broadbent and J. M. Hammersley, Percolation processes. I. Crystals and mazes, Proc. Cambridge Philos. Soc. 53 (1957), 629–641. MR 91567, DOI 10.1017/s0305004100032680
- A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380. MR 757857, DOI 10.1016/0550-3213(84)90052-X John L. Cardy, Conformal invariance and surface critical behavior, Nuclear Phys. B 240 (1984), 514-522.
- John L. Cardy, Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories, Nuclear Phys. B 275 (1986), no. 2, 200–218. MR 858661, DOI 10.1016/0550-3213(86)90596-1
- John L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nuclear Phys. B 324 (1989), no. 3, 581–596. MR 1019724, DOI 10.1016/0550-3213(89)90521-X
- John L. Cardy, Critical percolation in finite geometries, J. Phys. A 25 (1992), no. 4, L201–L206. MR 1151081
- John W. Essam, Graph theory and statistical physics, Discrete Math. 1 (1971/72), no. 1, 83–112. MR 297279, DOI 10.1016/0012-365X(71)90009-4
- J. W. Essam, Percolation theory, Rep. Progr. Phys. 43 (1980), no. 7, 833–912. MR 588142, DOI 10.1088/0034-4885/43/7/001 M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Progr. Phys. 30 (1967), 615-730.
- Michael E. Fisher, Scaling, universality and renormalization group theory, Critical phenomena (Stellenbosch, 1982) Lecture Notes in Phys., vol. 186, Springer, Berlin, 1983, pp. 1–138. Notes prepared with the assistance of Arthur G. Every. MR 719887, DOI 10.1007/3-540-12675-9_{1}1
- James Glimm and Arthur Jaffe, Quantum physics, Springer-Verlag, New York-Berlin, 1981. A functional integral point of view. MR 628000, DOI 10.1007/978-1-4684-0121-9
- Geoffrey Grimmett, Percolation, Springer-Verlag, New York, 1989. MR 995460, DOI 10.1007/978-1-4757-4208-4 P. Heller, Experimental investigations of critical phenomena, Rep. Progr. Phys. 30 (1967), 731-826.
- Harry Kesten, Percolation theory for mathematicians, Progress in Probability and Statistics, vol. 2, Birkhäuser, Boston, Mass., 1982. MR 692943, DOI 10.1007/978-1-4899-2730-9
- R. P. Langlands, C. Pichet, Ph. Pouliot, and Y. Saint-Aubin, On the universality of crossing probabilities in two-dimensional percolation, J. Statist. Phys. 67 (1992), no. 3-4, 553–574. MR 1171144, DOI 10.1007/BF01049720
- Robert P. Langlands, Dualität bei endlichen Modellen der Perkolation, Math. Nachr. 160 (1993), 7–58 (German). MR 1244993, DOI 10.1002/mana.3211600103
- R. P. Langlands and M.-A. Lafortune, Finite models for percolation, Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993) Contemp. Math., vol. 177, Amer. Math. Soc., Providence, RI, 1994, pp. 227–246. MR 1303608, DOI 10.1090/conm/177/01924 David S. McLachlan, Michael Blaszkiewicz, and Robert E. Newnham, Electrical resistivity of composites, J. Amer. Ceram. Soc. 73 (1990), 2187-2203.
- David R. Nelson and Michael E. Fisher, Soluble renormalization groups and scaling fields for low-dimensional Ising systems, Ann. Physics 91 (1975), 226–274. MR 391850, DOI 10.1016/0003-4916(75)90284-5 Jean Perrin, Les atomes, Coll. Idées, vol. 222, Gallimard, Paris, 1970.
- Alvany Rocha-Caridi and Nolan R. Wallach, Characters of irreducible representations of the Lie algebra of vector fields on the circle, Invent. Math. 72 (1983), no. 1, 57–75. MR 696690, DOI 10.1007/BF01389129
- Alvany Rocha-Caridi and Nolan R. Wallach, Characters of irreducible representations of the Virasoro algebra, Math. Z. 185 (1984), no. 1, 1–21. MR 724043, DOI 10.1007/BF01214971 Yvan Saint-Aubin, Phénomènes critiques en deux dimensions et invariance conforme, Course notes, Univ. of Montréal, 1987. Jan V. Sengers and Anneke Levelt Sengers, The critical region, Chemical and Engineering News, 10 June 1968, pp. 104-118. Po-zen Wong, The statistical physics of sedimentary rock, Physics Today 41 (1988), 24-32.
- F. Y. Wu, The Potts model, Rev. Modern Phys. 54 (1982), no. 1, 235–268. MR 641370, DOI 10.1103/RevModPhys.54.235 F. Yonezawa, S. Sakamoto, K. Aoki, S. Nosé, and M. Hori, Percolation in Penrose tiling and its dual—in comparison with analysis for Kagomé, dice and square lattices, J. Non-Crys. Solids 106 (1988), 262-269. Robert Ziff, On the spanning probability in 2D percolation, Phys. Rev. Lett. 69 (1992), 2670-2673.
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 30 (1994), 1-61
- MSC (2000): Primary 82B43; Secondary 81-03, 81T40, 82B20, 82B27
- DOI: https://doi.org/10.1090/S0273-0979-1994-00456-2
- MathSciNet review: 1230963