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POINTWISE CONVERGENCE OF WAVELET EXPANSIONS

SUSAN E. KELLY, MARK A. KON, AND LOUISE A. RAPHAEL

Abstract. In this note we announce that under general hypotheses, wavelet-

type expansions (of functions in LP , 1 < p < oo , in one or more dimensions)

converge pointwise almost everywhere, and identify the Lebesgue set of a func-

tion as a set of full measure on which they converge. It is shown that unlike

the Fourier summation kernel, wavelet summation kernels P¡ are bounded by

radial decreasing Lx convolution kernels. As a corollary it follows that best

L2 spline approximations on uniform meshes converge pointwise almost ev-

erywhere. Moreover, summation of wavelet expansions is partially insensitive

to order of summation.

We also give necessary and sufficient conditions for given rates of conver-

gence of wavelet expansions in the sup norm. Such expansions have order of

convergence j if and only if the basic wavelet i// is in the homogeneous Sobolev

space H7S~ ' . We also present equivalent necessary and sufficient conditions

on the scaling function. The above results hold in one and in multiple dimen-

sions.

1. Introduction

In this note we present several convergence results for wavelet and multi-

resolution-type expansions. It is natural to ask where such expansions converge

(and whether they converge almost everywhere) and what are the rates of con-

vergence. The answer is that under rather weak hypotheses, one- and multi-

dimensional wavelet expansions converge pointwise almost everywhere and,

more specifically, on the Lebesgue set of a function being expanded. We will

also give exact rates of convergence in the supremum norm, in terms of Sobolev

properties of the basic wavelet or of the scaling function.

Wavelets with local support in the time and frequency domains were defined

by A. Grossman and J. Morlet [GM] in 1984 in order to analyze seismic data.

The prototypes of wavelets, however, can be found in the work of A. Haar [Ha]

and the modified Franklin systems of J.-O. Strömberg [St].

To identify the underlying structure and to generate interesting examples of

orthonormal bases for L2(R), S. Mallat [Ma] and Y. Meyer [Me] developed the

framework of multiresolution analysis. P. G. Lemarié and Y. Meyer [LM] con-

structed wavelets in S^(Rn ), the space of rapidly decreasing smooth functions.
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J.-O. Strömberg [St] developed spline wavelets while looking for unconditional

bases for Hardy spaces. G. Battle [Ba] and P. G. Lemarié [Le] developed these
bases in the context of wavelet theory. Spline wavelets have exponential decay

but only CN smoothness (for a finite N depending on the order of the asso-
ciated splines). I. Daubechies [Dal] constructed compactly supported wavelets

with CN smoothness. The support of these wavelets increased with the smooth-

ness; in general, to have C°° smoothness, wavelets must have infinite support.

Y. Meyer [Me] was among the first to study convergence results for wavelet

expansions; he was followed by G. Walter [Wal, Wa2]. Meyer proved that under

some regularity assumptions on the wavelets, wavelet expansions of continuous
functions converge everywhere. In contrast to these results, the pointwise con-

vergence results presented here give almost everywhere convergence (and con-

vergence on the Lebesgue set) for expansions of general LP ( 1 < p < oo) func-

tions. We assume rather mild bounds and no differentiability for the wavelet or

the scaling function; our conditions allow inclusion of the families of so-called
r-regular wavelets [Me], as well as some other wavelets.

These results parallel L. Carleson's [Ca] and R. A. Hunt's [Hu] theorems for

Fourier series. One difference and slight advantage of wavelet expansions comes
from the fact that almost everywhere convergence occurs on a simple set of full

measure, namely the Lebesgue set, while almost everywhere convergence for

Fourier series is established on a much more elaborate set of full measure.
We also give necessary and sufficient conditions for given pointwise (sup-

norm) rates of convergence of wavelet or multiresolution expansions, in terms

of Sobolev conditions on the basic wavelet or the scaling function. It has been
shown previously by Mallat [Ma] and Meyer [Me] that the Sobolev class of a

function is determined by the L2 rates of convergence of its wavelet expan-
sion. Necessary and sufficient conditions for L2 rates of convergence which

are analogous to our sup-norm conditions have been obtained by de Boor,

DeVore, and Ron [BDR], who have also studied sup-norm convergence in more
general situations [BR].

Our results on convergence rates can be viewed as a sharpening in the context
of wavelets of the well-known Strang-Fix [SF] conditions for convergence of
multiscale expansions.

The results given here hold for multiresolution expansions in multiple dimen-

sion. The proofs, which will appear elsewhere [KKR], involve the kernels of the
partial sums of such expansions and the above-mentioned result that such ker-

nels are bounded by rescalings of Li radial functions. We should add that such
bounds for wavelet expansions are nontrivial and arise from cancellations which
occur in the sum representations of the partial sum kernels. Naive bounding
of the summation kernels by using absolute values in their sum representations
fails to yield the needed radial bounds for any class of wavelets. We remark that

such bounds on the summation kernel can be obtained more easily by writing
it using the orthonormal translates <f>(x - k) of the scaling function, instead
of the wavelets y/jk . However, in proving results for convergence of wavelet

expansions (Theorem 2.1(iii)), we wish to avoid making any assumptions about
radial bounds for the scaling function.

The pointwise and LP convergence results contained here were obtained
independently by the first author and by the second two authors. Results on the
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Gibbs effect obtained by the first author will appear elsewhere.

To start, we define a multiresolution analysis on L2(Rd) [Ma, Me].

Definition 1.1. A multiresolution analysis on L2(Rd), d > 1, is an increasing

sequence {Vj}jez,

■ ■ ■ C V_2 C F_, C V0 C Vx C V2 c • • •

of closed subspaces in L2(Rd) where

f)Vj = {0},        [JV-= L2(Rd) ,
/ez jez

and the spaces Vj satisfy the following additional properties:

(i) For all / e L2(Rd), j e Z, and A: e Zrf,

/(x) € Vj <=► f(2x) e rç+1

and

f(x) eV0^ f(x -k)eV0.

(ii) There exists a scaling function <f> € V0 suchthat {4>jk}k€Zd is an orthonormal
basis of Vj, where

(1) <t>Jk(x) = 2Jd'2<t>(2Jx-k),

for x e Rd , ; € Z, and /c e Zd .

Associated with the Vj spaces, we additionally define W¡ to be the orthog-

onal complement of Vj in VJ+l , so that Vj+i = Vj © Wj. Thus, L2{Rd) -

^2®Wj. We define Pj and £?, = P¡+\ - Pj, respectively, to be the orthogonal

projections onto the spaces Vj and Wj, with kernels Pj(x, y) and Qj(x, y).

Under the assumptions in the above definition and with some additional

regularity, it can be proved [Me, Da2] that there then exists a set {y/x} e Wq ,

where X belongs to an index set A of cardinality 2d - 1, such that {wj^kez11 ,x

is an orthonormal basis of Wj, and thus {Wjk}jez,k€Zd,i. ^s a wavelet basis of

L2(Rd), where

(2) y/}k(x) = 2jd/2y/x(2jx-k),

for x e Rd , j 6 Z, and keZd .

Definition 1.2. For / € ^(R'')  ( 1 < p < oo) we define the following related
expansions:

(a) The sequence of projections {Pjf(x)}j will be called the multiresolution
expansion of /.

(b) The scaling expansion of / is defined to be

(3) f„Y,bk<Kx-k)+   Y,   "jkfjk(x)>
k j>0;k;X

where the coefficients aj^ and b^ are the L2 expansion coefficients of /.
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(c) The wavelet expansion of f is

(4) /- J2 aJkVjk(x)>
j;k;X

where the coefficients a;¿ are the L2 expansion coefficients of /.

We remark for part (a) of the above definition that it can be shown that the

projections Pj (defined by their integral kernels) extend to bounded operators

on Lp, 1 < p < oo. The L2 expansion coefficients in (b) and (c) (defined
by integration against f) are defined and uniformly bounded for any / G LP ,
1 <p < oo.

Definition 1.3. The point x is a Lebesgue point of the measurable function
f(x) on Rd if / is integrable in some neighborhood of x, and

lim —l— i \f{x) -f(x + y)\dy = 0,
€-.0 V{Be) JBe

where Be denotes the ball of radius e about the origin, and V denotes volume.

Such points p are essentially characterized by the fact that the average values
of f(x) around p converge to the values of / at these points, as averages are

taken over smaller balls centered at x. Note that all continuity points are
Lebesgue points, but the converse is not true.

Definition 1.4. A function f(x) is in the class 3Î3S if it is absolutely bounded

by an L1 radial decreasing function t](x), i.e., n(xi) = n(x2) whenever |xi| =

l*2l » V(xi) < *¡{X2) when \x\\ > \x2\, and n{x) G Ll(Rd).

A function / is partially continuous if there exists a set A of vectors a G Rd
with positive measure such that lime_o W(x + ea) = V(x) for a e A.

Definition 1.5. The homogeneous Sobolev space of order 5 is defined by

(5) tf^EE j/GL^R'):   ||/||A,^Wy|/(0|2|^^<ool.

The ordinary Sobolev space Hs is defined as Hsh in (5), with replacement of

KP by (l^l25 + 1). Under the Fourier transform, the space Hsh is a dense

subspace of the complete weighted L2 space of all measurable /(£) with

11/11/, j < oo. This dense subspace consists of those functions /(£) which are

also in the regular unweighted L2 space.

Convergence rates of wavelet expansions are sensitive to both the smoothness
of the wavelet and the smoothness of the function being expanded. For a wavelet

y/ of given smoothness, the sensitivity to the Sobolev space of the function being

expanded disappears when the function's Sobolev parameter is sufficiently large.

Definition 1.6. A family y/k of wavelets yields pointwise order of approximation
(or pointwise order of convergence) r in the space Hs if for any function / G

Hs, the y'th order wavelet approximation P¡f satisfies

(6) \\Pjf-f\u = o{2~n,
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as j tends to infinity. More generally, the wavelets y/x yield pointwise order

of approximation (or convergence) r if for any function / which is sufficiently

smooth (i.e., is in a Sobolev space of sufficiently large order s), (6) holds.

We will give several necessary and sufficient conditions (in terms of their

Fourier transforms and membership in homogeneous Sobolev spaces) on the
basic wavelet y/ or the scaling function <j> for given orders of convergence.

In practice, sufficient smoothness for a function / (in the sense of the above

definition) will mean that / is in Hs+d/2 or a higher Sobolev space.

2. Pointwise convergence results

With the background given, our main results can now be presented.

Theorem 2.1. (i) Assume only that the scaling function (¡>ofa given multireso-

lution analysis is in 3138, i.e., that it is bounded by an Lx radial decreasing

function. Then for any f G Lp(Rd) (1 < p < oo), its multiresolution expansion

{Pjf} converges to f pointwise almost everywhere.

(ii) If <j), y/x G 3138 for all X, then also both the scaling (3) {if 1 < p < oo)
and wavelet (4) {if \ < p < oo) expansions of any f G LP converge to f

pointwise almost everywhere. If further y/x and <f> are {partially) continuous,

then both expansions converge to f on its Lebesgue set.

(iii) If we assume only y/x(x) ln(2 + |jc|) G 3138 for all X, then for f e LP,
its wavelet (for 1 < p < oo) and multiresolution {for 1 < p < oo) expansions

converge to f pointwise almost everywhere. If further yix is {partially) continu-

ous for all X, then both the wavelet and multiresolution expansions converge to

f on its Lebesgue set.

(iv) The last two statements hold for any order of summation in which the

range of the values of j for which the sum over k and X is partially complete
always remains bounded.

In statement (iv) above, the summation over k and X is partially complete

for a fixed j if it contains some terms, but not all with the given value of j.

By the range of values for which the sum is partially complete we mean the

difference of the largest and smallest value of j for which the sum is partially

complete. Statement (iv) requires that this range always be smaller than some
constant M.

The above result on convergence of multiresolution expansions applies to

spline expansions as well. Given a uniform grid K in R, one might ask whether

given a function / G L2(Rd), the best L2 approximations Pjf of / (by splines

of a fixed polynomial order k) converge to / pointwise as the grid size goes to
0. The answer to this is affirmative.

Corollary 2.2. For f g LP(R) (1 < p < oo), the order k best L2 spline ap-
proximations Pjf of f converge to f pointwise almost everywhere, and more

specifically on the Lebesgue set of f, as the uniform mesh size goes to 0.

The proof follows from the fact that best spline approximations are partial

sums of multiresolution expansions, with some radially bounded (3138) scaling

function 4>. This result also extends to multidimensional splines. Technically,

the best L2 approximation of / G LP only makes sense when p = 2, but it
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can be defined for functions in LP by continuous extension of the projections

Pj from L2 to IP .
The following proposition is a consequence of the proof of Theorem 2.1. It

has been proved before under somewhat stronger hypotheses, yielding stronger

conclusions in [Me].

Proposition 2.3. Under the hypotheses of case (i), case (ii), or case (iii) of Theo-

rem 2.1, LP convergence of the expansions also follows for 1 < p < oo.

Thus for wavelet series and more generally for one- and multidimensional

multiresolution expansions, essentially all hoped for convergence properties

hold, regardless of rates of convergence.

The basis for Theorem 2.1 is the bound on the kernel of the projection Pj
onto the scaling space Vj. It can be shown that under any of the hypotheses in

Theorem 2.1, the kernel Pm(x, y) has the form

Pm(x,y) =     J2     Vjk{x)Vjk(y) = J2 4>mk(x)Kk{y)
j<m;keZä;X k€Z

for x, y G Rd , with convergence of both sums on the right occurring pointwise,
uniformly on subsets a positive distance away from the diagonal D = {(x, y) :

x = y} . The kernel converges to a delta distribution ô(x - y) in the following
sense:

Theorem 2.4. Under the assumption that 4> G 3138 or that yx(x) ln(2 + |x|) G

3138 for all X, the kernels Pj(x,y) of the projections onto Vj satisfy the con-
volution bound

(7) \Pj(x,y)\<C2JdH(2J(\x-y\)),

where H(\ • |) G ¿%38, i.e., H(\ • |) is a radial decreasing Ll function.

In one dimension, precise bounds can be obtained for kernels of specific
wavelets. Two examples are illustrated in the result below.

Theorem 2.5. In R1, let Pj(x, y) = ¿Zkez<i)jk{x)4>jk{y) be the summation ker-

nel, generated by the scaling function <j> G L2(R).

(a) If 4> has exponential decay, i.e., cp(x) < Ce~a^ for some positive a, then

\Pj(x,y)\<C2je-a2Jlx-yV2.

(b) // (j) has algebraic decay, <t>(x) < jj^jw for some N > 1, then

m*-y)\*cK{l + 2»       serf

for N>\.

As a corollary, if a scaling function (f> has rapid decay (faster than any poly-

nomial), then Pj(x, y) is bounded by a scaled convolution kernel (of the form

on the right side of (7)) which has rapid decay. Spline wavelets (see [St, Ba, Le])
satisfy the conditions in part (a), and wavelets constructed by P. G. Lemarié

and Y. Meyer [LM] are an example of wavelets of rapid decay.
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3. Rates of convergence

We will now give necessary and sufficient conditions on the basic wavelet yix

and on the scaling function 4>, for given supremum-norm rates of convergence

of wavelet expansions. The conditions on y/x (here given in terms of mem-

bership in homogeneous Sobolev spaces) can be translated into differentiability

and then moment conditions on y/x (see the introduction).

Theorem 3.1. Given a multiresolution analysis with either (i) a scaling function

<j> G 3138, (ii) basic wavelets satisfying y/Aln(2 + |x|) G 3138 for each X, or
(iii) a kernel for the basic projection P satisfying \P(x, y)\ < H(\x - y\) with
HÇi3î3g, the following conditions ((a) to (e')) are equivalent :

(a) The multiresolution expansion (see Definition 1.2) yields pointwise order

of approximation s.

(a') The multiresolution expansion yields pointwise order of approximation
s in every Sobolev space Hr for r > s + d/2.

(b) The projection I - Pj: Hsh+d/2 —» L°° is a bounded operator, where I is

the identity and d denotes dimension.

If there exists a family {y/x}^ c 3138 of basic wavelets corresponding to {Pj},

then:
(c) For every family of basic wavelets {y/x}x c 3Î38 corresponding to {Pj},

and for each X,  y/x € H~s~d'2.

(d) For every family of basic wavelets {y/x}x C 3138 corresponding to {Pj},

and for each X,

(8) /   i^(¿)i2i£r2(í+d/2)^<°°

for some (or for all) e > 0.

(d') For some family of basic wavelets {y/x} ¿ c 3138 corresponding to {Pj},

equation (8) holds.
If in addition there exists a scaling function <j> G 3Î38 corresponding to some

family of basic wavelets as above, then:

(e) For every such scaling function,

(9) /      i(2n)d\m\2 - l) |i|-2(^/2) ft < oo

for some (or all) e > 0.

(e') For some such scaling function <f>, equation (9) holds.

The above conditions on the scaling function can also be given in modified

form in the case where the scaling function <j> has nonorthonormal integer

translates. Necessary and sufficient conditions for convergence rates of spline

and other nonorthonormal expansions can then be obtained directly from the
same arguments as above.
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