Pointwise convergence of wavelet expansions
HTML articles powered by AMS MathViewer
- by Susan E. Kelly, Mark A. Kon and Louise A. Raphael PDF
- Bull. Amer. Math. Soc. 30 (1994), 87-94 Request permission
Abstract:
In this note we announce that under general hypotheses, wavelet-type expansions (of functions in ${L^p}$, $1 \leq p \leq \infty$, in one or more dimensions) converge pointwise almost everywhere, and identify the Lebesgue set of a function as a set of full measure on which they converge. It is shown that unlike the Fourier summation kernel, wavelet summation kernels ${P_j}$ are bounded by radial decreasing ${L^1}$ convolution kernels. As a corollary it follows that best ${L^2}$ spline approximations on uniform meshes converge pointwise almost everywhere. Moreover, summation of wavelet expansions is partially insensitive to order of summation. We also give necessary and sufficient conditions for given rates of convergence of wavelet expansions in the sup norm. Such expansions have order of convergence s if and only if the basic wavelet $\psi$ is in the homogeneous Sobolev space $H_h^{ - s - d/2}$. We also present equivalent necessary and sufficient conditions on the scaling function. The above results hold in one and in multiple dimensions.References
- Guy Battle, A block spin construction of ondelettes. I. Lemarié functions, Comm. Math. Phys. 110 (1987), no. 4, 601–615. MR 895218, DOI 10.1007/BF01205550 C. de Boor, R. DeVore, and A. Ron, Approximation from shift-invariant subspaces of ${L^2}({\textbf {R}^d})$, preprint. C. de Boor and A. Ron, Fourier analysis of the approximation power of principal shiftinvariant subspaces, preprint.
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. MR 199631, DOI 10.1007/BF02392815
- Ingrid Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. MR 951745, DOI 10.1002/cpa.3160410705
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), no. 4, 723–736. MR 747432, DOI 10.1137/0515056
- Alfred Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69 (1910), no. 3, 331–371 (German). MR 1511592, DOI 10.1007/BF01456326
- Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235–255. MR 0238019 P. G. Lemarié, Ondelettes á localisation exponentielle, J. Math. Pures Appl. (to appear).
- P. G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 1–18 (French). MR 864650, DOI 10.4171/RMI/22
- Susan E. Kelly, Mark A. Kon, and Louise A. Raphael, Pointwise convergence of wavelet expansions, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 1, 87–94. MR 1248218, DOI 10.1090/S0273-0979-1994-00490-2
- Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\textbf {R})$, Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87. MR 1008470, DOI 10.1090/S0002-9947-1989-1008470-5
- Yves Meyer, Ondelettes et opérateurs. I, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Ondelettes. [Wavelets]. MR 1085487 G. Strang and G. Fix, A Fourier analysis of the finite element variational method, Constructive Aspects of Functional Analysis, Edizioni Cremonese, Rome, 1973.
- Jan-Olov Strömberg, A modified Franklin system and higher-order spline systems on $\textbf {R}^{n}$ as unconditional bases for Hardy spaces, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 475–494. MR 730086
- Gilbert G. Walter, Approximation of the delta function by wavelets, J. Approx. Theory 71 (1992), no. 3, 329–343. MR 1191579, DOI 10.1016/0021-9045(92)90123-6 —, Pointwise convergence of wavelet expansions, preprint, 1992.
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 30 (1994), 87-94
- MSC (2000): Primary 42C15; Secondary 40A30
- DOI: https://doi.org/10.1090/S0273-0979-1994-00490-2
- MathSciNet review: 1248218