Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
1568099
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
M. Bakonyi and T. Constantinescu
Title:
Schur's algorithm and several applications
Additional book information:
Pitman Research Notes in Mathematics Series, volume 261, Longman Scientific and Technical, \!Harlow, \!1992, \!1\!90 pp., \!US$54.95. \!ISBN 0-582-90120-9 Copublished in the U. S. by John Wiley \& Sons. ISBN 0-470-21974-2.
V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz, Funkcional. Anal. i Priložen. 2 (1968), no. 1, 1–19 (Russian). MR 0234274
V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems, Funkcional. Anal. i Priložen. 2 (1968), no. 4, 1–17 (Russian). MR 0636333
[3] -, Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem, Math. USSR Sb. 15 (1971), 31-73.
N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. Translated by N. Kemmer. MR 0184042
D. Z. Arov, The influence of V. P. Potapov and M. G. Kreĭn on my scientific work, Matrix and operator valued functions, Oper. Theory Adv. Appl., vol. 72, Birkhäuser, Basel, 1994, pp. 1–16. MR 1310357
Grigore Arsene and Zoia Ceauşescu, On intertwining dilations. IV, Tohoku Math. J. (2) 30 (1978), no. 3, 423–438. MR 509024, DOI 10.2748/tmj/1178229978
Joseph A. Ball, Israel Gohberg, and Leiba Rodman, Interpolation of rational matrix functions, Operator Theory: Advances and Applications, vol. 45, Birkhäuser Verlag, Basel, 1990. MR 1083145, DOI 10.1007/978-3-0348-7709-1
Grigore Arsene and Zoia Ceauşescu, On intertwining dilations. IV, Tohoku Math. J. (2) 30 (1978), no. 3, 423–438. MR 509024, DOI 10.2748/tmj/1178229978
T. Constantinescu, On the structure of positive Toeplitz forms, Dilation theory, Toeplitz operators, and other topics (Timişoara/Herculane, 1982) Oper. Theory Adv. Appl., vol. 11, Birkhäuser, Basel, 1983, pp. 127–149. MR 789634
T. Constantinescu, On the structure of the Naĭmark dilation, J. Operator Theory 12 (1984), no. 1, 159–175. MR 757117
T. Constantinescu, An algorithm for the operatorial Carathéodory-Fejér problem, Spectral theory of linear operators and related topics (Timişoara/Herculane, 1983) Oper. Theory Adv. Appl., vol. 14, Birkhäuser, Basel, 1984, pp. 81–107. MR 789610
Louis de Branges, Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. MR 0229011
P. Delsarte and Y. Genin, On the role of orthogonal polynomials on the unit circle in digital signal processing applications, Orthogonal polynomials (Columbus, OH, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., Dordrecht, 1990, pp. 115–133. MR 1100290
Patrick Dewilde and Harry Dym, Lossless chain scattering matrices and optimum linear prediction: the vector case, Internat. J. Circuit Theory Appl. 9 (1981), no. 2, 135–175. MR 612268, DOI 10.1002/cta.4490090203
Vladimir K. Dubovoj, Bernd Fritzsche, and Bernd Kirstein, Matricial version of the classical Schur problem, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 129, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1992. With German, French and Russian summaries. MR 1152328
Harry Dym, $J$ contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, CBMS Regional Conference Series in Mathematics, vol. 71, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR 1004239, DOI 10.1090/cbms/071
Ciprian Foias and Arthur E. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Advances and Applications, vol. 44, Birkhäuser Verlag, Basel, 1990. MR 1120546, DOI 10.1007/978-3-0348-7712-1
J. Geronimus, On polynomials orthogonal on the circle, on trigonometric moment-problem and on allied Carathéodory and Schur functions, C. R. (Doklady) Acad. Sci. URSS (N.S.) 39 (1943), 291–295. MR 0010739
J. Geronimus, On polynomials orthogonal on the circle, on trigonometric moment-problem and on allied Carathéodory and Schur functions, Rec. Math. [Mat. Sbornik] N. S. 15(57) (1944), 99–130 (Russian., with English summary). MR 0012715
[20] I. Gohberg, ed., I. Schur methods in operator theory and signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel and Boston, 1986.
J. William Helton, Joseph A. Ball, Charles R. Johnson, and John N. Palmer, Operator theory, analytic functions, matrices, and electrical engineering, CBMS Regional Conference Series in Mathematics, vol. 68, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1987. MR 896034, DOI 10.1090/cbms/068
G. Herglotz, I. Schur, G. Pick, R. Nevanlinna, and H. Weyl, Ausgewählte Arbeiten zu den Ursprüngen der Schur-Analysis, Teubner-Archiv zur Mathematik [Teubner Archive on Mathematics], vol. 16, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1991 (German). Gewidmet dem großen Mathematiker Issai Schur (1875–1941). [Dedicated to the great mathematician Issai Schur (1875–1941)]; Edited and with a foreword and afterword by Bernd Fritzsche and Bernd Kirstein; With contributions by W. Ledermann and W. K. Hayman; With English, French and Russian summaries. MR 1162976, DOI 10.1007/978-3-322-90926-8
[23] T. Kailath, Notes on the Szegö unit circle orthogonal polynomials in least-squares prediction theory, G. Szegö: Collected Papers, Vol. 1, Birkhäuser, Boston, 1982, pp. 43-46.
Thomas Kailath, A theorem of I. Schur and its impact on modern signal processing, I. Schur methods in operator theory and signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel, 1986, pp. 9–30. MR 902601, DOI 10.1007/978-3-0348-5483-2_{2}
V. È. Katsnel′son, Methods of $J$-theory in continuous interpolation problems of analysis. Part I, T. Ando, Hokkaido University, Sapporo, 1985. Translated from the Russian and with a foreword by T. Ando. MR 777324
I. V. Kovalishina and V. P. Potapov, Integral representation of Hermitian positive functions, T. Ando, Hokkaido University, Sapporo, 1982. Translated from the Russian by T. Ando. MR 711021
M. G. Kreĭn and A. A. Nudel′man, The Markov moment problem and extremal problems, Translations of Mathematical Monographs, Vol. 50, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish. MR 0458081
Xian-Jin Li, Hilbert spaces of entire functions and polynomials orthogonal on the unit circle, Methods Appl. Anal. 1 (1994), no. 1, 25–43. MR 1260381, DOI 10.4310/MAA.1994.v1.n1.a3
[29] R. Nevanlinna, Über beschränkte Funktionen, die in gegebenen Punkten vorgeschriebene Werte annehmen, Ann. Acad. Sci. Fenn. Ser. A 13, no. 1 (1919).
Marvin Rosenblum and James Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. Oxford Science Publications. MR 822228
Donald Sarason, Generalized interpolation in $H^{\infty }$, Trans. Amer. Math. Soc. 127 (1967), 179–203. MR 208383, DOI 10.1090/S0002-9947-1967-0208383-8
Ion Suciu and Ilie Valuşescu, Factorization theorems and prediction theory, Rev. Roumaine Math. Pures Appl. 23 (1978), no. 9, 1393–1423. MR 522596
[33] I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I, II, J. Reine Angew. Math. 147 (1917), 205-232; 148 (1918), 122-145; Gesammelte Abhandlungen, Vol. II, nos. 29, 30; reprinted in Herglotz, Schur, et al. [22]; English translation in Gohberg [20].
G. Szegő, Beiträge zur Theorie der Toeplitzschen Formen, Math. Z. 6 (1920), no. 3-4, 167–202 (German). MR 1544404, DOI 10.1007/BF01199955
G. Szegö, Concerning sets of polynomials orthogonal simultaneously on several circles, Bull. Amer. Math. Soc. 45 (1939), no. 2, 129–132. MR 1563925, DOI 10.1090/S0002-9904-1939-06915-2
[36] -, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., New York, 1939; fourth ed. with revisions, Providence, RI, 1975.
Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
- [1]
- V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz, Functional Anal. Appl. 2 (1968), 1-18. MR 0234274 (38:2591)
- [2]
- -, Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems, Functional Anal. Appl. 2 (1968), 269-281. MR 0636333 (58:30446)
- [3]
- -, Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem, Math. USSR Sb. 15 (1971), 31-73.
- [4]
- N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner, New York, 1965. MR 0184042 (32:1518)
- [5]
- D. Arov, The influence of V. P. Potapov and M. G. Kreĭn on my scientific work, Potapov memorial volume, Oper. Theory: Adv. Appl., Birkhäuser, Basel (to appear). MR 1310357 (95m:01015)
- [6]
- Gr. Arsene, Z. Ceauşescu, and C. Foiaş, On intertwining dilations. VIII, J. Operator Theory 4 (1980), 55-91. MR 587368 (82d:47013f)
- [7]
- J. A. Ball, I. Gohberg, and L. Rodman, Interpolation of rational matrix functions, Oper. Theory Adv. Appl., vol. 45, Birkhäuser, Basel and Boston, 1990. MR 1083145 (92m:47027)
- [8]
- Z. Ceauşescu and C. Foiaş, On intertwining dilations. V, Acta Sci. Math. (Szeged) 40 (1978), 9-32. MR 496820 (82d:47013b)
- [9]
- T. Constantinescu, On the structure of positive Toeplitz forms, Oper. Theory Adv. Appl., vol. 11, Birkhäuser, Basel and Boston, 1983, pp. 127-149. MR 789634 (86h:47033)
- [10]
- -, On the structure of the Naimark dilation, J. Operator Theory 12 (1984), 159-175. MR 757117 (86b:47044)
- [11]
- -, An algorithm for the operatorial Caratheodory-Fejer problem, Oper. Theory Adv. Appl., vol. 14, Birkhäuser, Basel and Boston, 1984, pp. 81-107. MR 789610 (86i:47009)
- [12]
- L. de Branges, Hilbert spaces of entire functions, Prentice-Hall, Englewood Cliffs, NJ, 1968. MR 0229011 (37:4590)
- [13]
- P. Delsarte and Y. Genin, On the role of orthogonal polynomials on the unit circle in digital signal processing applications, Orthogonal Polynomials: Theory and Practice (Columbus, OH, 1989), Kluwer, Dordrecht, 1990, pp. 115-133. MR 1100290 (92b:94002)
- [14]
- P. Dewilde and H. Dym, Lossless chain scattering matrices and optimum linear prediction: the vector case, Internat. J. Circuit Theory Appl. 9 (1981), 135-175. MR 612268 (82d:94053)
- [15]
- V. K. Dubovoj, B. Fritzsche, and B. Kirstein, Matricial version of the classical Schur problem, Teubner-Texte, bd. 129, B. G. Teubner, Verlagsgesellschaft, Stuttgart, 1992. MR 1152328 (93e:47021)
- [16]
- H. Dym, J contractive matrix functions, reproducing kernel Hilbert spaces, and interpolation, CBMS Reg. Conf. Ser. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1989. MR 1004239 (90g:47003)
- [17]
- C. Foiaş. and A. Frazho, The commutant lifting approach to interpolation problems, Oper. Theory Adv. Appl., vol. 44, Birkhäuser, Basel and Boston, 1990. MR 1120546 (92k:47033)
- [18]
- J. Geronimus, On polynomials orthogonal on the circle, on trigonometric moment-problem and on allied Carathéodory and Schur functions, C. R. (Doklady) Acad. Sci. USSR (N.S.) 39 (1943), 291-295. MR 0010739 (6:62g)
- [19]
- -, On polynomials orthogonal on the circle, on trigonometric moment-problem and on allied Carathéodory and Schur functions, Mat. Sb. 57 (1944), 99-130. MR 0012715 (7:63e)
- [20]
- I. Gohberg, ed., I. Schur methods in operator theory and signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel and Boston, 1986.
- [21]
- J. W. Helton, J. A. Ball, C. R. Johnson, and J. N. Palmer, Operator theory, analytic functions, matrices, and electrical engineering, CBMS Reg. Conf. Ser. Math., vol. 68, Amer. Math. Soc., Providence, RI, 1987. MR 896034 (89f:47001)
- [22]
- G. Herglotz, I. Schur, et al., Ausgewählte arbeiten zu den Ursprüngen der Schur-analysis, (B. Fritzsche and B. Kirstein, eds.), B. G. Teubner, Stuttgart, 1991. MR 1162976 (93d:01095)
- [23]
- T. Kailath, Notes on the Szegö unit circle orthogonal polynomials in least-squares prediction theory, G. Szegö: Collected Papers, Vol. 1, Birkhäuser, Boston, 1982, pp. 43-46.
- [24]
- -, A theorem of I. Schur and its impact on modern signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel and Boston, 1986, pp. 9-30. MR 902601 (89c:00051)
- [25]
- V. E. Katsnel'son, Methods of J-theory in continuous interpolation problems of analysis. I, (T. Ando, transl.), Hokkaido University, Sapporo, 1985. MR 777324 (86i:47048)
- [26]
- I. V. Kovalishina and V. P. Potapov, Integral representation of Hermitian positive functions, (T. Ando, transl.), Hokkaido University, Sapporo, 1982. MR 711021 (85e:47019)
- [27]
- M. G. Kreĭn and A. A. Nudel'man, The Markov moment problem and extremal problems, Transl. Math. Monographs, vol. 50, Amer. Math. Soc., Providence, RI, 1977. MR 0458081 (56:16284)
- [28]
- Xian-Jin Li, Hilbert spaces of entire functions and orthogonal polynomials on the unit circle, Methods and Appl. Anal, (to appear). MR 1260381 (95a:30004)
- [29]
- R. Nevanlinna, Über beschränkte Funktionen, die in gegebenen Punkten vorgeschriebene Werte annehmen, Ann. Acad. Sci. Fenn. Ser. A 13, no. 1 (1919).
- [30]
- M. Rosenblum and J. Rovnyak, Hardy classes and operator theory, Oxford Univ. Press, New York, 1985. MR 822228 (87e:47001)
- [31]
- D. Sarason, Generalized interpolation in
, Trans. Amer. Math. Soc. 127 (1967), 179-203. MR 0208383 (34:8193)
- [32]
- I. Suciu and I. Valuşescu, Factorization theorems and prediction theory, Rev. Roumaine Math. Pures Appl. 23 (1978), 1393. MR 522596 (80f:60042)
- [33]
- I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I, II, J. Reine Angew. Math. 147 (1917), 205-232; 148 (1918), 122-145; Gesammelte Abhandlungen, Vol. II, nos. 29, 30; reprinted in Herglotz, Schur, et al. [22]; English translation in Gohberg [20].
- [34]
- G. Szegö, Beiträge zur Theorie der Toeplitzschen Formen. I, II, Math. Z. 6 (1920), 167-202; 9 (1921), 167-190; Collected Papers, Vol. 1, Birkhäuser, Boston, 1982, pp. 237-272, 279-302. MR 1544404
- [35]
- -, Concerning sets of polynomials orthogonal simultaneously on several circles, Bull. Amer. Math. Soc. 45 (1939), 129-132; Collected Papers, Vol. 2, Birkhäuser, Boston, 1982, pp. 707-710. MR 1563925
- [36]
- -, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., New York, 1939; fourth ed. with revisions, Providence, RI, 1975.
- [37]
- B. Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert spaces, North-Holland, New York, 1970. MR 0275190 (43:947)
Review Information:
Reviewer:
James Rovnyak
Journal:
Bull. Amer. Math. Soc.
30 (1994), 270-276
DOI:
https://doi.org/10.1090/S0273-0979-1994-00462-8