Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
1568092
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
Joseph H. Silverman and John T. Tate
Title:
Rational points on elliptic curves
Additional book information:
Undergraduate Texts in Mathematics, Springer-Verlag, New York and Berlin, 1992 (first ed.\ 1989), x+281 pp., US$29.95. ISBN 0-387-97825-9.
J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193–291. MR 199150, DOI 10.1112/jlms/s1-41.1.193
J. W. S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991. MR 1144763, DOI 10.1017/CBO9781139172530
J. S. Chahal, Topics in number theory, The University Series in Mathematics, Plenum Press, New York, 1988. MR 955797, DOI 10.1007/978-1-4899-0439-3
David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992. MR 1201151
Stéfane Fermigier, Un exemple de courbe elliptique définie sur $\textbf {Q}$ de rang $\geq 19$, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 6, 719–722 (French, with English and French summaries). MR 1183810
Gerhard Frey, Links between stable elliptic curves and certain Diophantine equations, Ann. Univ. Sarav. Ser. Math. 1 (1986), no. 1, iv+40. MR 853387
Andrew Granville, The Kummer-Wieferich-Skula approach to the first case of Fermat’s last theorem, Advances in number theory (Kingston, ON, 1991) Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 479–497. MR 1368443
Andrew Granville and Michael B. Monagan, The first case of Fermat’s last theorem is true for all prime exponents up to 714,591,416,091,389, Trans. Amer. Math. Soc. 306 (1988), no. 1, 329–359. MR 927694, DOI 10.1090/S0002-9947-1988-0927694-5
Benedict H. Gross, Kolyvagin’s work on modular elliptic curves, $L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235–256. MR 1110395, DOI 10.1017/CBO9780511526053.009
Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
Dale Husemoller, Elliptic curves, Graduate Texts in Mathematics, vol. 111, Springer-Verlag, New York, 1987. With an appendix by Ruth Lawrence. MR 868861, DOI 10.1007/978-1-4757-5119-2
Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716, DOI 10.1007/978-1-4757-2103-4
[14] A. W. Knapp, Elliptic curves, Math. Notes, vol. 40, Princeton Univ. Press, Princeton, NJ, 1992.
Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911, DOI 10.1007/978-1-4684-0255-1
V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435–483. MR 1106906
Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817
H. W. Lenstra Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), no. 3, 649–673. MR 916721, DOI 10.2307/1971363
B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287
B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), no. 7, 593–610. MR 1121312, DOI 10.2307/2324924
K. A. Ribet, On modular representations of $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476. MR 1047143, DOI 10.1007/BF01231195
Kenneth A. Ribet, From the Taniyama-Shimura conjecture to Fermat’s last theorem, Ann. Fac. Sci. Toulouse Math. (5) 11 (1990), no. 1, 116–139 (English, with English and French summaries). MR 1191476
J.-P. Serre, Lettre à J.-F. Mestre, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 263–268 (French). MR 902597, DOI 10.1090/conm/067/902597
Jean-Pierre Serre, Sur les représentations modulaires de degré $2$ de $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$, Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, DOI 10.1215/S0012-7094-87-05413-5
Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
Jonathan W. Tanner and Samuel S. Wagstaff Jr., New bound for the first case of Fermat’s last theorem, Math. Comp. 53 (1989), no. 188, 743–750. MR 982371, DOI 10.1090/S0025-5718-1989-0982371-4
John T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206. MR 419359, DOI 10.1007/BF01389745
M. Waldschmidt, P. Moussa, J. M. Luck, and C. Itzykson (eds.), From number theory to physics, Springer-Verlag, Berlin, 1992. Papers from the Meeting on Number Theory and Physics held in Les Houches, March 7–16, 1989. MR 1221099, DOI 10.1007/978-3-662-02838-4
André Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149–156 (German). MR 207658, DOI 10.1007/BF01361551
[30] A. Wiles, Modular elliptic curves and Fermat's Last Theorem (to appear).
- [1]
- J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, Survey article, J. London Math. Soc. 41 (1966), 193-291. MR 0199150 (33:7299)
- [2]
- -, Lectures on elliptic curves, Cambridge Univ. Press, Cambridge and New York, 1991. MR 1144763 (92k:11058)
- [3]
- J. Chahal, Topics in number theory, Plenum Press, New York and London, 1988. MR 955797 (89m:11001)
- [4]
- D. A. Cox, Primes of the form
: Fermat, class field theory, and complex multiplication, Wiley, New York, 1989. MR 1028322 (90m:11016)
- [5]
- J. E. Cremona, Algorithms for modular elliptic curves, Cambridge Univ. Press, Cambridge and New York, 1992. MR 1201151 (93m:11053)
- [6]
- S. Fermigier, Un exemple de courbe elliptique définie sur Q de rang
, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 719-722. MR 1183810 (93i:11067)
- [7]
- G. Frey, Links between stable elliptic curves and certain diophantine equations, Ann. Univ. Sarav. Ser. Math. 1 (1986), 1-40. MR 853387 (87j:11050)
- [8]
- A. Granville, On the Kummer-Wieferich-Skula approach to the first case of Fermat's Last Theorem, Advances in Number Theory (F. Q. Gouvêa and N. Yui, eds.), Clarendon Press, Oxford, 1993, pp. 479-498. MR 1368443 (96m:11020)
- [9]
- A. Granville and M. B. Monagan, The first case of Fermat's last theorem is true for all prime exponents up to 714,591,416,091,389, Trans. Amer. Math. Soc. 306 (1988), 329-359. MR 927694 (89g:11025)
- [10]
- B. H. Gross, Kolyvagin's work on modular elliptic curves, London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235-256. MR 1110395 (93c:11039)
- [11]
- B. H. Gross and D. B. Zagier, Heegner points and the derivatives of L-series, Invent. Math. 84 (1986), 225-320. MR 833192 (87j:11057)
- [12]
- D. Husemöller, Elliptic curves, Graduate Texts in Math., vol. 111, Springer-Verlag, Berlin and New York, 1987. MR 868861 (88h:11039)
- [13]
- K. F. Ireland and M. I. Rosen, A classical introduction to modern number theory, Graduate Texts in Math., vol. 84, second ed., Springer-Verlag, Berlin and New York, 1990. MR 1070716 (92e:11001)
- [14]
- A. W. Knapp, Elliptic curves, Math. Notes, vol. 40, Princeton Univ. Press, Princeton, NJ, 1992.
- [15]
- N. Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Math., vol. 97, Springer-Verlag, Berlin and New York, 1984. MR 766911 (86c:11040)
- [16]
- V. Kolyvagin, Euler systems, Prog. in Math., vol. 87, Birkhäuser, Boston, 1990, pp. 435-483. MR 1106906 (92g:11109)
- [17]
- S. Lang, Elliptic curves diophantine analysis, Grundlehren der Math. Wiss., vol. 231, Springer-Verlag, Berlin and New York, 1978. MR 518817 (81b:10009)
- [18]
- H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), 649-673. MR 916721 (89g:11125)
- [19]
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33-186. MR 488287 (80c:14015)
- [20]
- -, Number theory as gadfly, Amer. Math. Monthly 98 (1991), 593-610. MR 1121312 (92f:11077)
- [21]
- K. A. Ribet, On modular representations of
arising from modular forms, Invent. Math. 100 (1990), 431-476. MR 1047143 (91g:11066)
- [22]
- -, From the Taniyama-Shimura Conjecture to Fermat's Last Theorem, Ann. Fac. Sci. Toulouse Math. (5) 11 (1990), 116-139. MR 1191476 (93j:11035)
- [23]
- J. P. Serre, Lettre à J. F. Mestre, 13 août 1985, Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 263-268. MR 902597 (88m:11039)
- [24]
- -, Sur les représentations modulaires de degré 2 de
, Duke Math. J. 54 (1987), 179-230. MR 885783 (88g:11022)
- [25]
- J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math., vol. 106, Springer-Verlag, Berlin and New York, 1986. MR 817210 (87g:11070)
- [26]
- J. W. Tanner and S. S. Wagstaff, Jr., New bounds for the first case of Fermat's Last Theorem, Math. Comp. 53 (1989), 743-750. MR 982371 (90h:11028)
- [27]
- J. T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179-206. MR 0419359 (54:7380)
- [28]
- M. Waldschmidt et al., eds., From number theory to physics (Lectures given at the meeting "Number Theory and Physics" held at the Centre de Physique, Les Houches, 1989), Springer-Verlag, Berlin and New York, 1992. MR 1221099 (93m:11001)
- [29]
- A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149-156. MR 0207658 (34:7473)
- [30]
- A. Wiles, Modular elliptic curves and Fermat's Last Theorem (to appear).
Review Information:
Reviewer:
William R. Hearst III
Reviewer:
Kenneth A. Ribet
Journal:
Bull. Amer. Math. Soc.
30 (1994), 248-252
DOI:
https://doi.org/10.1090/S0273-0979-1994-00465-3