An isoperimetric inequality related to Thue's equation
Author:
Michael A. Bean
Journal:
Bull. Amer. Math. Soc. 31 (1994), 204-207
MSC:
Primary 11D75; Secondary 11H99
DOI:
https://doi.org/10.1090/S0273-0979-1994-00517-8
MathSciNet review:
1260516
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper announces the discovery of an isoperimetric inequality for the area of plane regions defined by binary forms. This result has been applied subsequently in the enumeration of solutions to the Thue inequality and, given its fundamental nature, may find application in other areas as well.
- [1] M. Abramowitz and I. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
- [2] M. A. Bean, Areas of plane regions defined by binary forms, Ph.D. thesis, Univ. of Waterloo, 1992.
- [3] -, Binary forms, hypergeometric functions, and the Schwarz-Christoffel mapping formula, submitted.
- [4] Michael A. Bean, An isoperimetric inequality for the area of plane regions defined by binary forms, Compositio Math. 92 (1994), no. 2, 115–131. MR 1283225
- [5] M. A. Bean and J. L. Thunder, Isoperimetric inequalities for volumes associated with decomposable forms, submitted.
- [6] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- [7] Kurt Mahler, Zur Approximation algebraischer Zahlen. III, Acta Math. 62 (1933), no. 1, 91–166 (German). Über die mittlere Anzahl der Darstellungen grosser Zahlen durch binäre Formen. MR 1555382, https://doi.org/10.1007/BF02393603
- [8] Julia Mueller and W. M. Schmidt, On the Newton polygon, Monatsh. Math. 113 (1992), no. 1, 33–50. MR 1149059, https://doi.org/10.1007/BF01299304
- [9] J. Mueller and W. M. Schmidt, Thue’s equation and a conjecture of Siegel, Acta Math. 160 (1988), no. 3-4, 207–247. MR 945012, https://doi.org/10.1007/BF02392276
- [10] Wolfgang M. Schmidt, Diophantine approximations and Diophantine equations, Lecture Notes in Mathematics, vol. 1467, Springer-Verlag, Berlin, 1991. MR 1176315
- [11] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.
- [12] Jeffrey Lin Thunder, The number of solutions to cubic Thue inequalities, Acta Arith. 66 (1994), no. 3, 237–243. MR 1276991, https://doi.org/10.4064/aa-66-3-237-243
Retrieve articles in Bulletin of the American Mathematical Society with MSC: 11D75, 11H99
Retrieve articles in all journals with MSC: 11D75, 11H99
Additional Information
DOI:
https://doi.org/10.1090/S0273-0979-1994-00517-8
Article copyright:
© Copyright 1994
American Mathematical Society