Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 1568138
Full text of review: PDF This review is available free of charge.
Book Information:
Author: Douglas C. Ravenel
Title: Nilpotence and periodicity in stable homotopy theory
Additional book information: Princeton University Press, Princeton, NJ, 1992, xiv + 209 pp., US$24.95. ISBN 0-691-02572-X.
- [1] J. Frank Adams, The selected works of J. Frank Adams. Vol. I, Cambridge University Press, Cambridge, 1992. Edited and with an introduction and biographical data by J. P. May and C. B. Thomas. MR 1203312
- [2] Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith, Nilpotence and stable homotopy theory. I, Ann. of Math. (2) 128 (1988), no. 2, 207–241. MR 960945, https://doi.org/10.2307/1971440
- [3] Michael J. Hopkins, Global methods in homotopy theory, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 73–96. MR 932260
- [4] M. J. Hopkins and B. H. Gross, The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 1, 76–86. MR 1217353, https://doi.org/10.1090/S0273-0979-1994-00438-0
- [5] Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory. II, Ann. of Math. (2) 148 (1998), no. 1, 1–49. MR 1652975, https://doi.org/10.2307/120991
- [6] Goro Nishida, The nilpotency of elements of the stable homotopy groups of spheres, J. Math. Soc. Japan 25 (1973), 707–732. MR 341485, https://doi.org/10.2969/jmsj/02540707
- [7] Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351–414. MR 737778, https://doi.org/10.2307/2374308
- [8] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
Review Information:
Reviewer: Peter S. Landweber
Journal: Bull. Amer. Math. Soc. 31 (1994), 243-246
DOI: https://doi.org/10.1090/S0273-0979-1994-00527-0