Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 1181197
Full text of review: PDF This review is available free of charge.
Book Information:
Author: R. Kotecky R. Dobrushin, and S. Shlosman
Title: Wulff construction, A global shape from local interaction
Additional book information: American Mathematical Society, Providence, RI, 1992, ix + 204 pp., US$130.00. ISBN 0-8218-4563-2.
- [BM] John E. Brothers and Frank Morgan, The isoperimetric theorem for general integrands, Michigan Math. J. 41 (1994), no. 3, 419–431. MR 1297699, https://doi.org/10.1307/mmj/1029005070
- [B] Herbert Busemann, The isoperimetric problem for Minkowski area, Amer. J. Math. 71 (1949), 743–762. MR 31762, https://doi.org/10.2307/2372362
- [DP] B. Dacorogna and C.-E. Pfister, Wulff theorem and best constant in Sobolev inequality, J. Math. Pures Appl. (9) 71 (1992), no. 2, 97–118. MR 1170247
- [D] Alexander Dinghas, Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen, Z. Kristallogr., Mineral. Petrogr. 105 (1944), no. Abt. A., 304–314 (German). MR 0012454
- [F] Irene Fonseca, The Wulff theorem revisited, Proc. Roy. Soc. London Ser. A 432 (1991), no. 1884, 125–145. MR 1116536, https://doi.org/10.1098/rspa.1991.0009
- [FM] Irene Fonseca and Stefan Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 1-2, 125–136. MR 1130601, https://doi.org/10.1017/S0308210500028365
- [G] Michael E. Gage, Evolving plane curves by curvature in relative geometries, Duke Math. J. 72 (1993), no. 2, 441–466. MR 1248680, https://doi.org/10.1215/S0012-7094-93-07216-X
- [GG] Janko Gravner and David Griffeath, Threshold growth dynamics, Trans. Amer. Math. Soc. 340 (1993), no. 2, 837–870. MR 1147400, https://doi.org/10.1090/S0002-9947-1993-1147400-3
- [H] C. Herring, The use of classical macroscopic concepts in surface energy problems, Structure and Properties of Solid Surfaces (R. Gomer, ed.), Univ. of Chicago Press, Chicago, 1952, pp. 5-73; Some theorems on the free energy of crystal surfaces, Phys. Rev. 28 (1951), 87-93.
- [KS] Markos A. Katsoulakis and Panagiotis E. Souganidis, Interacting particle systems and generalized evolution of fronts, Arch. Rational Mech. Anal. 127 (1994), no. 2, 133–157. MR 1288808, https://doi.org/10.1007/BF00377658
- [M] Frank Morgan, Geometric measure theory, Academic Press, Inc., Boston, MA, 1988. A beginner’s guide. MR 933756
- [O] Robert Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182–1238. MR 500557, https://doi.org/10.1090/S0002-9904-1978-14553-4
- [P] C.-E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta 64 (1991), no. 7, 953–1054. MR 1149430
- [R] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- [T] Jean E. Taylor, Existence and structure of solutions to a class of nonelliptic variational problems, Symposia Mathematica, Vol. XIV (Convegno di Teoria Geometrica dell’Integrazione e Varietà Minimali, INDAM, Roma, Maggio 1973), Academic Press, London, 1974, pp. 499–508. MR 0420407
- [TCH] J. E. Taylor, J. W. Cahn, and C. A. Handwerker, Geometric models of crystal growth, Acta Met. Mat. 40 (1992), 1443-1474.
- [W] G. Wulff, Zur frage der Geschwindigkeit des Wachstums und der Auflosung der Krystal-flachen, Z. Krist. 34 (1901), 449.
Review Information:
Reviewer: Jean E. Taylor
Journal: Bull. Amer. Math. Soc. 31 (1994), 291-296
DOI: https://doi.org/10.1090/S0273-0979-1994-00535-X