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out the book. I will close by adding one more example which I found just as

I was asked to review this book. During his study of the quantum algebra at

a root of 1, Lusztig [L] defines some normal finite-dimensional Hopf subalge-

bra u and shows that the quotient Hopf algebra by u is identified with the

hyperalgebra of a simply-connected semisimple algebraic group G. In fact, this

extension of Hopf algebras is cleft (Theorem 7.2.2) so that the quantum algebra

at a root of 1 (of odd order) has the form of a crossed product u#ahy{G). This

fact has some applications which I will talk about elsewhere.
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Computational mathematics is generally thought to consist of the following
subfields:

( 1 ) numerical solution of differential and integral equations,

(2) numerical linear algebra,

(3) computational geometry, and

(4) discrete algorithms and complexity theory.

There has been significant interactions between most of these areas with one

notable exception, namely, the first and the last. The most complete overview

of all four subject areas has been in the highly influential and brilliantly lucid

book on applied mathematics by Gilbert Strang [1]. Even there the full power

of complexity theory did not emerge until the seventh chapter, where discrete

algorithms were considered. In earlier chapters where differential equations

were involved, complexity theory took the form of simple operation counts.

In the book under review, Werschulz makes an attempt to go well beyond

this and apply the full force of complexity theory to algorithms designed for the
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approximation solution of differential and integral equations. Before comment-

ing on the success or failure of this enterprise, it should be noted that the book

is well written. It contains very few typos and technical errors, and those that

are present are easily corrected. In addition, Werschulz has a sound command

of both areas. The book has an appendix on Sobolev Spaces, a subject crucial

for finite element approximations, that is complete and to the point. His survey

of complexity theory is equally clear and well done.

The book starts out by discussing the general ideas in terms of the simple

two-point boundary value problem

(1)

(2)

(Lu)(x) = --J—jCx) + u(x) = f(x)   for x e [0, 1],

du{0)     du{\) = 0.
dx dx

Here / is the given data and is assumed to lie in the unit ball F of square

integrable functions; i.e.,

(3) F = {/: \\f\\i> < 1}.

The next step is to formulate ( 1 )-(2) in terms of the Sobolev space Hl (0, 1 ),

which consists of L2(0, 1) functions whose derivatives are in £2(0, 1) • The

variational principle takes the following form. Find u in Hl(0, 1) for which

(4)
Jo

du dv

dx dx
+ uv dx

i
fv dx

holds for all v in //'[0, 1]. The solution u is given by u = Sf, where S is a

linear operator from F to //'(0, 1). In a typical finite element approximation

one selects a grid consisting of n points in [0,1] and uses, for example, the

space S„ of continuous piecewise linear functions in (4) instead of //'[0, 1].

If V\, ... , vn is a basis for Sn , then the approximate solution u„ in S„ is

characterized by the following:

(5)
/'Jo

dun dv,

dx dx
+ UnVi dx fJo

fvi dx, !</'<«.

This is equivalent to a nonsingular set of n algebraic equations in n unknowns.

The starting point for the complexity theory of this or any other algorithm

for approximating Sf is an information operator

(6) Nf-

.{f,V„)_

where {{•, Vj)}"=i are independent continuous linear functional on L2[0, 1].

This in essence is the basic information available to any algorithm. The latter

is defined as the linear operator

(7) <p:N{F)^Hl[0, 1],

and the error associated with this algorithm is defined by

(8) e(<p,N) = sup\\Sf-<p(Nf)\\rmo.i]-
f€F
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f{Nf) = Y,V>vi)SvJ

Note that in the finite element example we have (/, v¡) = J0 fv¡ dx for / G F

and u„ = <p(Nf). The radius and diameter associated with this error are

(9) r{N) = infe{<p,N)
f

and

(10) d(N) = sup{\\Sh\\:heierNAF},

respectively, and it is easy to see that

r(N) < d(N) < 2r{N).

In this context it is easily shown that the best algorithm cp*  is obtained by

projection, i.e.,

(11)

satisfies

(12) r(N) = e(<p*, N).

One of the most interesting and, indeed, controversial issues to arise in this

theory concerns adaptive algorithms. The use of such algorithms, for exam-

ple, to construct grids for finite-element and finite-difference approximation is

widespread [3, 4]. Many feel that the introduction of adaptive grid algorithms

has been the single most important advance in numerical analysis in the last

decade. Werschulz and his theory are in direct conflict with these trends. In-

deed, his results show "... as far as optimal error is concerned, there is no
need to consider algorithms using adaptive information,... ."

To be more precise, the model used by Werschulz for adaptive methods is

one where the information y¡ - (/, Vj) depends not only on the data / but

also on previous information yx, ... , y¡-\ . In addition, the dimension n of

the matrix operator (6) also depends on /. We can write this as

W)
hifWx)

(13) Na{f) = {

Mn</;j>t, ••• ,yn-\)>

where y¡ = Xj(f; yx,,.., yj^i) and {Xj(-;yu ■••, yj-i): 1 < ; < n) are
n = n(f) independent continuous linear functional on F. The nonadaptive
version is

W)
W; 0)

(14) Nnon(f) = {
i   ;

U„(/;0,...,0)J
and Werschulz shows that for a wide class of linear problems (Theorem 4.4.2.1,
page 39)

(15) d(Nnon)<d(Na).

In most cases r(Nnon) = jd(nnon), which means

(16) r(NnoD) < r(Na).
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Much has been written about this type of result and its striking conflict with

modern computational practice. After exploring the meaning of the result for

elliptic partial differential equations (Chapter 5), Werschulz focuses on linearity

as a key issue, suggesting that all problems are in reality nonlinear and that this

may be the reason for the practical success of adaptive methods. For example,
for boundary value problems like

(17) Lu = -div|> grad u] + qu = f   in Q

and

(18) a^ + ßu = 0   ondCl,
dn

the dependence of the solution u on the data / is linear, but its dependence
on the coefficients p, q, a, ß is nonlinear.

I personally feel that linearity is not the issue, and indeed a version of his

Theorem 4.4.2.1 may in fact also be true for a reasonable class of nonlinear

problems. If one accepts this, then complexity theory itself emerges as the cul-

prit. Buried in the infs and sups that define the error radius and diameter is the

presumption of information not generally available in practical situations. An

all-knowing numerical modeler may not need adaptive grids. In other contexts,

however, where there is a great deal of uncertainty about the nature of the so-

lution u and possible singularities, adaptively defined grids provide the single

best scheme for getting accurate results.

In addition to the above information/approximation theoretic structures,

Werschulz also considers computational costs. He assumes, not unreasonably,

that the cost of evaluating Nf is linear in its dimension; i.e.,

(19) cost(Zy,/) = cn,

for some number c. To this is added the cost of the algorithm <p , giving the
total computational cost of

cost(ç), N) = sup{cn + cost(/?, Nf)}.
f€F

The e-complexity of the problem is defined by

comp(e) = inf{cost((P, N) : e(<p , N) < e}.

In this context Werschulz derives some interesting results. For example, he

shows that the finite-element scheme (5) is within a constant factor from be-

ing optimal. More precisely, if tpFEM(Nf) = un is defined by (5) and n is
sufficiently large so that

e(<pFEM ,N)<e,

then

(20) hSC0St^FEM'^<2.lf^
£—o      comp(e) y   c

This result is consistent with the fact that finite-element methods are projections

and bear a close relationship with the optimal algorithm (p* defined by (11).

Adaptivity is also considered from the point of view of complexity. Again, it

is found that it is in a suitable sense suboptimal. Indeed, the precise results for

the boundary value problem (l)-(2) are quite counterintuitive. For example, if
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the data / is continuous in (0, 1 ) except for one point of discontinuity, then

the adaptive complexity is

compa(e) = 0(loge~')   ase—>0,

while the nonadaptive case has

compNON/(e) = 0(e-')   as e -> 0

(Corollary 5.7.1, page 138). Here adaptivity wins by an order of magnitude.

On the other hand, if / has more than one point of discontinuity, a situation

for which adaptive grids are thought to be the most useful, one has

compfl(e) = 0(e-1),        compNON(e) = 0(e_1)       ase-+0;

i.e., adaptivity is no better than the nonadaptive case.

The above material is developed in the first five chapters, and in Chapter 6

extensions to other problems are given. Included are elliptic systems, Fredholm

equations of the second kind, ill-posed problems, and initial value problems for

ordinary differential equations.

Because of the infs and sups involved in comp(e), this type of analysis is

often called worst-case analysis. In the final two chapters (Chapters 7 and 8)

a probabilistic analysis is treated. This approach typically gives more realistic

results. For example, in the worst-case setting the solution u to (l)-(2) is in

//'[0, 1] but no smoother. In this context, the convergence of most numerical

schemes including finite elements is in question. This leads to the questionable

conclusion that such problems are intractable. This disappears in the average

case setting, and Werschulz does a good job of developing this material. The

issue concerning adaptivity, on the other hand, does not change, and the general

conclusion is the same as the deterministic case (see pages 241-242).

Clearly, a lot of work has gone into this book, and its breadth is very im-

pressive. Nevertheless, the overall impact of the work will depend on how well

the theme "... adaptive information is no more powerful than nonadaptive

information..." holds up in light of computational practice.
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