Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1568159
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Joel H. Shapiro
Title: Composition operators and classical function theory
Additional book information: Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993, xvi + 223 pp., US$34.00. ISBN 0-387-94067-7.

Author: R. K. Singh and J. S. Manhas
Title: Composition operators on function spaces
Additional book information: North-Holland Mathematics Studies, vol. 179, North-Holland, Amsterdam, 1993, x+315 pp., 200 Dfl. ISBN 0-444-81593-7.

References [Enhancements On Off] (What's this?)

[1]
P. S. Bourdon and J. S. Shapiro, Cyclic properties of composition operators (to appear).
  • Carl C. Cowen, Composition operators on Hilbert spaces of analytic functions: a status report, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 131–145. MR 1077383, DOI 10.1016/j.jpaa.2009.05.015
  • James Guyker, On reducing subspaces of composition operators, Acta Sci. Math. (Szeged) 53 (1989), no. 3-4, 369–376. MR 1033609
  • Valentin Matache, On the minimal invariant subspaces of the hyperbolic composition operator, Proc. Amer. Math. Soc. 119 (1993), no. 3, 837–841. MR 1152988, DOI 10.1090/S0002-9939-1993-1152988-8
  • Barbara D. MacCluer and Joel H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), no. 4, 878–906. MR 854144, DOI 10.4153/CJM-1986-043-4
  • Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280
  • Eric A. Nordgren, Composition operators, Canadian J. Math. 20 (1968), 442–449. MR 223914, DOI 10.4153/CJM-1968-040-4
  • [8]
    -, Composition operators in Hilbert spaces, Hilbert Space Operators, Lecture Notes in Math., vol. 693, Springer-Verlag, Berlin, 1978, pp. 37-63.
  • Eric Nordgren, Peter Rosenthal, and F. S. Wintrobe, Invertible composition operators on $H^p$, J. Funct. Anal. 73 (1987), no. 2, 324–344. MR 899654, DOI 10.1016/0022-1236(87)90071-1
  • Eric A. Nordgren, Peter Rosenthal, and F. S. Wintrobe, Composition operators and the invariant subspace problem, C. R. Math. Rep. Acad. Sci. Canada 6 (1984), no. 5, 279–283. MR 764103
  • Donald Sarason, Angular derivatives via Hilbert space, Complex Variables Theory Appl. 10 (1988), no. 1, 1–10. MR 946094, DOI 10.1080/17476938808814282
  • [12]
    H. J. Schwartz, Composition operators on $ {\mathcal{H}^2}$, Thesis, Univ. of Toledo, 1968.
  • Joel H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375–404. MR 881273, DOI 10.2307/1971314
  • [14]
    R. K. Singh, Composition operators, Thesis, Univ. of New Hampshire, 1972.
    [15]
    G. Valiron, Sur l'iteration des fonctions holomorphes dans un demi-plan, Bull. Sci. Math. (2) 55 (1931), 105-128.
  • Warren R. Wogen, Composition operators acting on spaces of holomorphic functions on domains in $\textbf {C}^n$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 361–366. MR 1077457, DOI 10.1090/pspum/051.2/1077457

  • Review Information:

    Reviewer: Peter Rosenthal
    Journal: Bull. Amer. Math. Soc. 32 (1995), 150-153
    DOI: https://doi.org/10.1090/S0273-0979-1995-00562-8