Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1568168
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Chi-tai Chuang
Title: Normal families of meromorphic functions
Additional book information: World Scientific, Singapore, 1993, xi+473 pp., US$68.00. ISBN 981-02-1257-7.

Author: Joel L. Schiff
Title: Normal families
Additional book information: Springer, New York, 1993, ix+236 pp., US$39.00. ISBN 0-387-97967-0.

References [Enhancements On Off] (What's this?)

  • Daniel S. Alexander, A history of complex dynamics, Aspects of Mathematics, E24, Friedr. Vieweg & Sohn, Braunschweig, 1994. From Schröder to Fatou and Julia. MR 1260930, DOI 10.1007/978-3-663-09197-4
  • Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355–373. MR 1344897, DOI 10.4171/RMI/176
  • W. Bergweiler and W. H. J. Fuchs, On the zeros of the second derivative of real entire functions, J. Anal. 1 (1993), 73–79. MR 1230507
  • [4]
    A. Bloch, La conception actuelle de la théorie des fonctions entirés et méromorphes, Enseign. Math. 25 (1926), 83-103.
  • Yong Xing Ku, A criterion for normality of families of meromorphic functions, Sci. Sinica Special Issue I on Math. (1979), 267–274 (Chinese, with French summary). MR 662205
  • W. K. Hayman, Research problems in function theory, The Athlone Press [University of London], London, 1967. MR 0217268
  • Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, Ont., 1962. MR 0201608
  • Serge Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. MR 886677, DOI 10.1007/978-1-4757-1945-1
  • [9]
    P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.
  • I. B. Oshkin, On a condition for the normality of families of holomorphic functions, Uspekhi Mat. Nauk 37 (1982), no. 2(224), 221–222 (Russian). MR 650781
  • Xue Cheng Pang, Bloch’s principle and normal criterion, Sci. China Ser. A 32 (1989), no. 7, 782–791. MR 1057999
  • Xue Cheng Pang, On normal criterion of meromorphic functions, Sci. China Ser. A 33 (1990), no. 5, 521–527. MR 1070538
  • Wilhelm Schwick, Normality criteria for families of meromorphic functions, J. Analyse Math. 52 (1989), 241–289. MR 981504, DOI 10.1007/BF02820480
  • Wilhelm Schwick, Repelling periodic points in the Julia set, Bull. London Math. Soc. 29 (1997), no. 3, 314–316. MR 1435565, DOI 10.1112/S0024609396007035
  • Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), no. 8, 813–817. MR 379852, DOI 10.2307/2319796
  • [16]
    -, Normal families revisited, Complex Analysis and Related Topics (J. J. O. O. Wiegerinck, ed.), Univ. of Amsterdam, Amsterdam, 1993, pp. 149-164.

    Review Information:

    Reviewer: David Drasin
    Journal: Bull. Amer. Math. Soc. 32 (1995), 257-261
    DOI: https://doi.org/10.1090/S0273-0979-1995-00573-2