Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1568170
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Winfried Bruns and J\"urgen Herzog
Title: Cohen-Macaulay rings
Additional book information: Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993, xi + 403~pp., US$79.95. ISBN 0-521-41068-1.

References [Enhancements On Off] (What's this?)

  • Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461
  • M. Auslander, Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631–647. MR 179211
  • Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
  • Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68 (French). MR 877006, DOI 10.1007/BF01405091
  • I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54–106. MR 16094, DOI 10.1090/S0002-9947-1946-0016094-3
  • William Fulton, Algebraic curves. An introduction to algebraic geometry, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes written with the collaboration of Richard Weiss. MR 0313252
  • William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
  • Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
  • Raymond C. Heitmann, A counterexample to the rigidity conjecture for rings, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 94–97. MR 1197425, DOI 10.1090/S0273-0979-1993-00410-5
  • Melvin Hochster, Topics in the homological theory of modules over commutative rings, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 24, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975. Expository lectures from the CBMS Regional Conference held at the University of Nebraska, Lincoln, Neb., June 24–28, 1974. MR 0371879
  • Melvin Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84 (1983), no. 2, 503–553. MR 723406, DOI 10.1016/0021-8693(83)90092-3
  • M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI 10.2307/2373744
  • Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
  • Melvin Hochster and Craig Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89. MR 1147957, DOI 10.2307/2946563
  • Melvin Hochster and Craig Huneke, Applications of the existence of big Cohen-Macaulay algebras, Adv. Math. 113 (1995), no. 1, 45–117. MR 1332808, DOI 10.1006/aima.1995.1035
  • [HH4]
    -, Tight closure in equal characteristic zero, in preparation.
  • Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
  • George Kempf, The Hochster-Roberts theorem of invariant theory, Michigan Math. J. 26 (1979), no. 1, 19–32. MR 514958
  • F. S. Macaulay, The algebraic theory of modular systems, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994. Revised reprint of the 1916 original; With an introduction by Paul Roberts. MR 1281612
  • [M2]
    -, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
  • David Mumford, Algebraic geometry. I, Grundlehren der Mathematischen Wissenschaften, No. 221, Springer-Verlag, Berlin-New York, 1976. Complex projective varieties. MR 0453732
  • James R. Munkres, Topological results in combinatorics, Michigan Math. J. 31 (1984), no. 1, 113–128. MR 736476, DOI 10.1307/mmj/1029002969
  • C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
  • Christian Peskine and Lucien Szpiro, Syzygies et multiplicités, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1421–1424 (French). MR 349659
  • Gerald Allen Reisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math. 21 (1976), no. 1, 30–49. MR 407036, DOI 10.1016/0001-8708(76)90114-6
  • Paul Roberts, Le théorème d’intersection, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 7, 177–180 (French, with English summary). MR 880574
  • Paul Roberts, Intersection theorems, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 417–436. MR 1015532, DOI 10.1007/978-1-4612-3660-3_{2}3
  • [S]
    Serre J.-P., Algèbre locale. Multiplicités, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin, Heidelberg, and New York, 1965.
  • Richard P. Stanley, Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133–135. MR 364231, DOI 10.1090/S0002-9904-1975-13670-6
  • Richard P. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math. 54 (1975), no. 2, 135–142. MR 458437, DOI 10.1002/sapm1975542135
  • Richard P. Stanley, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980), no. 3, 236–238. MR 563925, DOI 10.1016/0001-8708(80)90050-X

  • Review Information:

    Reviewer: Melvin Hochster
    Journal: Bull. Amer. Math. Soc. 32 (1995), 265-275
    DOI: https://doi.org/10.1090/S0273-0979-1995-00577-X