Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1568174
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: L.C. Evans and R. Gariepy
Title: Measure theory and fine properties of functions
Additional book information: CRC Press, Boca Raton, Ann Arbor, and London, 1992, viii + 268 pp., US$59.95. ISBN 0-8493-7157-0.

References [Enhancements On Off] (What's this?)

  • Ennio De Giorgi, Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio ad $r$ dimensioni, Ann. Mat. Pura Appl. (4) 36 (1954), 191–213 (Italian). MR 62214, DOI 10.1007/BF02412838
  • Ennio De Giorgi, Frontiere orientate di misura minima, Editrice Tecnico Scientifica, Pisa, 1961 (Italian). Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61. MR 0179651
  • Herbert Federer, The Gauss-Green theorem, Trans. Amer. Math. Soc. 58 (1945), 44–76. MR 13786, DOI 10.1090/S0002-9947-1945-0013786-6
  • Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
  • Wendell H. Fleming and Raymond Rishel, An integral formula for total gradient variation, Arch. Math. (Basel) 11 (1960), 218–222. MR 114892, DOI 10.1007/BF01236935
  • Herbert Federer and William P. Ziemer, The Lebesgue set of a function whose distribution derivatives are $p$-th power summable, Indiana Univ. Math. J. 22 (1972/73), 139–158. MR 435361, DOI 10.1512/iumj.1972.22.22013
  • Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682, DOI 10.1007/978-1-4684-9486-0
  • Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
  • [V]
    A.I. Vol'pert, The spaces BV and quasi-linear equations, Mat. Sb. 73 (1967), 255-302 (Russian); English transl., Math. USSR Sb. 2 (1967), 225-267.
  • William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3

  • Review Information:

    Reviewer: Robert Hardt
    Journal: Bull. Amer. Math. Soc. 32 (1995), 285-288
    DOI: https://doi.org/10.1090/S0273-0979-1995-00579-3