Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1568169
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Rolf Schneider
Title: Convex bodies: The Brunn-Minkowski theory
Additional book information: Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge Univ. Press, Cambridge, 1993, xiii + 490 pp., US$89.95. ISBN 0-521-35220-7.

References [Enhancements On Off] (What's this?)

[Br1]
H. Brunn, Über Ovale und Eiflächen, Dissertation, München, 1887.
[Br2]
-, Referat über eine Arbeit: Exacte Grundlageg für einer Theorie der Ovale, (S.B. Bayer, ed.), Akad. Wiss., 1894, pp. 93-111.
  • Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
  • [Lus]
    L.A. Lusternik, Die Brunn-Minkowskische Ungeleichung für beliebige messbare Mengen, Dokl. Acad. Sci. USSR 8 (1935), 55-58.
    [Min1]
    H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, Ges. Abh., vol. 2, Teubner, Leipzig, 1911, pp. 131-229.
    [Min2]
    -, Geometrie der Zahlen, Teubner, Leipzig, 1910.
  • Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
  • Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275, DOI 10.1017/CBO9780511662454
  • Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774

  • Review Information:

    Reviewer: V. Milman
    Journal: Bull. Amer. Math. Soc. 32 (1995), 261-264
    DOI: https://doi.org/10.1090/S0273-0979-1995-00581-1