Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1568175
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Carlo Marchioro and Mario Pulvirenti
Title: Mathematical theory of incompressible viscous fluids
Additional book information: Applied Mathematical Sciences, vol. 96, Springer-Verlag, Berlin and New York, 1994, xi+283 pp. US$49.00. ISBN 0-387-94044-8.

References [Enhancements On Off] (What's this?)

[1]
V. I. Yudovitch, Non-stationary flow of an ideal incompressible liquid, Zh. Vychisl. Mat. i Mat. Fiz. 3 (1966), 1032.
  • Norman J. Zabusky, M. H. Hughes, and K. V. Roberts, Contour dynamics for the Euler equations in two dimensions, J. Comput. Phys. 30 (1979), no. 1, 96–106. MR 524163, DOI 10.1016/0021-9991(79)90089-5
  • Alexandre Joel Chorin, The evolution of a turbulent vortex, Comm. Math. Phys. 83 (1982), no. 4, 517–535. MR 649815
  • Andrew Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S187–S220. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861488, DOI 10.1002/cpa.3160390711
  • Jean-Yves Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, 517–542 (French, with English and French summaries). MR 1235440
  • A. L. Bertozzi and P. Constantin, Global regularity for vortex patches, Comm. Math. Phys. 152 (1993), no. 1, 19–28. MR 1207667
  • Peter Constantin, Geometric and analytic studies in turbulence, Trends and perspectives in applied mathematics, Appl. Math. Sci., vol. 100, Springer, New York, 1994, pp. 21–54. MR 1277191, DOI 10.1007/978-1-4612-0859-4_{2}
  • Peter Constantin and Charles Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J. 42 (1993), no. 3, 775–789. MR 1254117, DOI 10.1512/iumj.1993.42.42034
  • Tosio Kato, Nonstationary flows of viscous and ideal fluids in $\textbf {R}^{3}$, J. Functional Analysis 9 (1972), 296–305. MR 0481652, DOI 10.1016/0022-1236(72)90003-1

  • Review Information:

    Reviewer: Peter Constantin
    Journal: Bull. Amer. Math. Soc. 32 (1995), 288-290
    DOI: https://doi.org/10.1090/S0273-0979-1995-00582-3