Families of curves and weight distributions of codes
HTML articles powered by AMS MathViewer
- by René Schoof PDF
- Bull. Amer. Math. Soc. 32 (1995), 171-183 Request permission
Abstract:
In this expository paper we show how one can, in a uniform way, calculate the weight distributions of some well-known binary cyclic codes. The codes are related to certain families of curves, and the weight distributions are related to the distribution of the number of rational points on the curves.References
- A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 5125, DOI 10.1007/BF02940746
- Henri Cohen, Trace des opérateurs de Hecke sur $\Gamma _{0}(N)$, Séminaire de Théorie des Nombres (1976–1977), Lab. Théorie des Nombres, CNRS, Talence, 1977, pp. Exp. No. 4, 9 (French). MR 0562292
- V. D. Goppa, Codes on algebraic curves, Dokl. Akad. Nauk SSSR 259 (1981), no. 6, 1289–1290 (Russian). MR 628795
- Tadao Kasami, Weight distributions of Bose-Chaudhuri-Hocquenghem codes, Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967) Univ. North Carolina Press, Chapel Hill, N.C., 1969, pp. 335–357. MR 0252100 —, The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes, Inform, and Control (Shenyang) 18, 369-394.
- Gilles Lachaud and Jacques Wolfmann, The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inform. Theory 36 (1990), no. 3, 686–692. MR 1053865, DOI 10.1109/18.54892 MacWilliams, J. and Sloane, N.J.A., The theory of error-correcting codes, North Holland, Amsterdam, 1983.
- C. M. Melas, A new group of codes for correction of dependent errors in data transmission, IBM J. Res. Develop. 4 (1960), 58–65. MR 110594, DOI 10.1147/rd.41.0058 Oesterlé, J., Sur la trace des opérateurs de Hecke, Thèse de ${3^{\circ }}$ cycle, Orsay, 1977.
- René Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), no. 2, 183–211. MR 914657, DOI 10.1016/0097-3165(87)90003-3
- René Schoof and Marcel van der Vlugt, Hecke operators and the weight distributions of certain codes, J. Combin. Theory Ser. A 57 (1991), no. 2, 163–186. MR 1111555, DOI 10.1016/0097-3165(91)90016-A
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Gerard van der Geer and Marcel van der Vlugt, Reed-Muller codes and supersingular curves. I, Compositio Math. 84 (1992), no. 3, 333–367. MR 1189892
- William C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521–560. MR 265369, DOI 10.24033/asens.1183
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 32 (1995), 171-183
- MSC: Primary 94B27; Secondary 11T71, 14H10, 94B15
- DOI: https://doi.org/10.1090/S0273-0979-1995-00586-0
- MathSciNet review: 1302786