Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Roland Hagen, Steffen Roch and Bernd Silbermann
Title: Spectral theory of approximation methods for convolution equations
Additional book information: Operator Theory: Advances and Applications, vol. 74, Birkhäuser Verlag, Basel, Boston, and Berlin, 1995, xii + 373 pp., ISBN 3-7643-5112-8, $124.00$

References [Enhancements On Off] (What's this?)

  • Albrecht Böttcher and Bernd Silbermann, Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990. MR 1071374, DOI 10.1007/978-3-662-02652-6
  • I. Ts. Gokhberg and I. A. Fel′dman, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Izdat. “Nauka”, Moscow, 1971 (Russian). MR 0355674
  • Steffen Roch and Bernd Silbermann, Algebras of convolution operators and their image in the Calkin algebra, Report MATH, vol. 90, Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, Berlin, 1990. With a German summary. MR 1085952
  • S. Prössdorf and B. Silbermann, Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen, B.G. Teubner Verlagsgesellschaft, Leipzig, 1977.
  • Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94

  • Review Information:

    Reviewer: Albrecht Böttcher
    Affiliation: Technische Universität Chemnitz-Zwickau
    Email: aboettch@mathematik.tu-chemnitz.de
    Journal: Bull. Amer. Math. Soc. 33 (1996), 237-243
    DOI: https://doi.org/10.1090/S0273-0979-96-00638-6
    Review copyright: © Copyright 1996 American Mathematical Society