Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
Full text of review:
PDF
This review is available free of charge.
Book Information:
Authors:
D. V. Anosov and
A. A. Bolibruch
Title:
The Riemann-Hilbert problem
Additional book information:
Aspects of Mathematics, Friedr. Vieweg, Braunschweig and Wiesbaden,
1994,
ix + 190 pp.,
ISBN 3-528-06496-X
D. V. Anosov and A. A. Bolibruch, The Riemann-Hilbert problem, Aspects of Mathematics, E22, Friedr. Vieweg & Sohn, Braunschweig, 1994. MR 1276272, DOI 10.1007/978-3-322-92909-9
[B1] A. A. Bolibruch, On sufficient conditions for the positive solvability of the Riemann-Hilbert Problem, Mathem. Notes of Ac. of Sci. of USSR 51:2 (1992), 110--117.
Andrey A. Bolibruch, Hilbert’s twenty-first problem for Fuchsian linear systems, Developments in mathematics: the Moscow school, Chapman & Hall, London, 1993, pp. 54–99. MR 1264423
W. Dekkers, The matrix of a connection having regular singularities on a vector bundle of rank $2$ on $P^{1}(C)$, Équations différentielles et systèmes de Pfaff dans le champ complexe (Sem., Inst. Rech. Math. Avancée, Strasbourg, 1975) Lecture Notes in Math., vol. 712, Springer, Berlin, 1979, pp. 33–43. MR 548141
[K1] V. P. Kostov, Fuchsian systems on and the Riemann-Hilbert Problem, preprint 303, University of Nice, 1991.
Vladimir Petrov Kostov, Fuchsian linear systems on $\textbf {C}\textrm {P}^1$ and the Riemann-Hilbert problem, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 2, 143–148 (English, with English and French summaries). MR 1197226
[L] I. Lappo-Danilevskii, Memoires sur la théorie des systèmes des equations differentielles lineaires, Chelsea, New York, 1953.
Josip Plemelj, Problems in the sense of Riemann and Klein, Interscience Tracts in Pure and Applied Mathematics, No. 16, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1964. Edited and translated by J. R. M. Radok. MR 0174815
Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- [AB]
- D. V. Anosov and A. A. Bolibruch, The Riemann-Hilbert Problem, Vieweg, Braunschweig and Wiesbaden, 1994. MR 95d:32024
- [B1]
- A. A. Bolibruch, On sufficient conditions for the positive solvability of the Riemann-Hilbert Problem, Mathem. Notes of Ac. of Sci. of USSR 51:2 (1992), 110--117.
- [B2]
- A. A. Bolibruch, Hilbert's twenty-first problem for Fuchsian linear systems, Developments in Mathematics: The Moscow School (V. Arnold and M. Monastyrsky, eds.), Chapman and Hall, London-Madras, 1993, pp. 54--99. MR 95d:32023
- [D]
- W. Dekkers, The matrix of a connection having regular singularities on a vector bundle of rank on , Lecture Notes in Math., vol. 712, 1979, pp. 33--43. MR 81m:14008
- [K1]
- V. P. Kostov, Fuchsian systems on and the Riemann-Hilbert Problem, preprint 303, University of Nice, 1991.
- [K2]
- V. P. Kostov, Fuchsian systems on and the Riemann-Hilbert Problem, C. R. Acad. Sci. Paris, Serie I (1992), 143--148. MR 94a:34007
- [L]
- I. Lappo-Danilevskii, Memoires sur la théorie des systèmes des equations differentielles lineaires, Chelsea, New York, 1953.
- [P]
- J. Plemelj, Problems in the Sense of Riemann and Klein, Interscience, New York, 1964. MR 30:5008
- [R]
- H. Röhrl, Das Riemann-Hilbertsche Problem der Theorie der linearen Differentialgleichungen, Math. Ann 133 (1957), 1--25. MR 19:274c
Review Information:
Reviewer:
Helmut Röhrl
Affiliation:
University of California at San Diego
Email:
hrohrl@ucsd.edu
Journal:
Bull. Amer. Math. Soc.
33 (1996), 199-202
DOI:
https://doi.org/10.1090/S0273-0979-96-00646-5
Review copyright:
© Copyright 1996
American Mathematical Society