Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF This review is available free of charge.

Book Information:

Authors: D. V. Anosov and A. A. Bolibruch

Title: The Riemann-Hilbert problem

Additional book information: Aspects of Mathematics, Friedr. Vieweg, Braunschweig and Wiesbaden, 1994, ix + 190 pp., ISBN 3-528-06496-X

*The Riemann-Hilbert problem*, Aspects of Mathematics, E22, Friedr. Vieweg & Sohn, Braunschweig, 1994. MR

**1276272**, DOI 10.1007/978-3-322-92909-9

**[B1]**

*On sufficient conditions for the positive solvability of the Riemann-Hilbert Problem*, Mathem. Notes of Ac. of Sci. of USSR

**51:2**(1992), 110--117.

*Hilbert’s twenty-first problem for Fuchsian linear systems*, Developments in mathematics: the Moscow school, Chapman & Hall, London, 1993, pp. 54–99. MR

**1264423**

*The matrix of a connection having regular singularities on a vector bundle of rank $2$ on $P^{1}(C)$*, Équations différentielles et systèmes de Pfaff dans le champ complexe (Sem., Inst. Rech. Math. Avancée, Strasbourg, 1975) Lecture Notes in Math., vol. 712, Springer, Berlin, 1979, pp. 33–43. MR

**548141**

**[K1]**

*Fuchsian systems on and the Riemann-Hilbert Problem*, preprint 303, University of Nice, 1991.

*Fuchsian linear systems on $\textbf {C}\textrm {P}^1$ and the Riemann-Hilbert problem*, C. R. Acad. Sci. Paris Sér. I Math.

**315**(1992), no. 2, 143–148 (English, with English and French summaries). MR

**1197226**

**[L]**

*Memoires sur la théorie des systèmes des equations differentielles lineaires*, Chelsea, New York, 1953.

*Problems in the sense of Riemann and Klein*, Interscience Tracts in Pure and Applied Mathematics, No. 16, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1964. Edited and translated by J. R. M. Radok. MR

**0174815**

*Infinite number fields with Noether ideal theories*, Amer. J. Math.

**61**(1939), 771–782. MR

**19**, DOI 10.2307/2371335

Review Information:

Reviewer: Helmut Röhrl

Affiliation: University of California at San Diego

Email: hrohrl@ucsd.edu

Journal: Bull. Amer. Math. Soc.

**33**(1996), 199-202

DOI: https://doi.org/10.1090/S0273-0979-96-00646-5

Review copyright: © Copyright 1996 American Mathematical Society