Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
Andy R. Magid
Title:
Lectures on differential Galois theory
Additional book information:
University Lecture Series, vol. 7, Amer. Math. Soc.,
Providence, RI,
1994,
xiii+105 pp.,
ISBN 0-8218-7004-1,
$35.00$
Yves André, Quatre descriptions des groupes de Galois différentiels, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) Lecture Notes in Math., vol. 1296, Springer, Berlin, 1987, pp. 28–41 (French). MR 932051, DOI 10.1007/BFb0078522
2. B. L. J. Braaksma and M. van der Put, Analytic and algebraic aspects of complex analytic differential equations, preprint, Groningen, 1994.
Frits Beukers, W. Dale Brownawell, and Gert Heckman, Siegel normality, Ann. of Math. (2) 127 (1988), no. 2, 279–308. MR 932298, DOI 10.2307/2007054
Lawrence Breen, Tannakian categories, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 337–376. MR 1265536
P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
Abdelmajid Fahim, Extensions galoisiennes d’algèbres différentielles, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 1, 1–4 (French, with English summary). MR 1149627, DOI 10.2140/pjm.1997.180.7
7. E. Galois, Mémoire sur les conditions de résolubilité des équations par radicaux (R. Bourgne and J.-P. Azra, eds.), Gauthiers-Villars, 1962. [The quotation reads as follows: ``que toute fonction des racines, déterminable rationnellement, soit invariable par ces substitutions.'']
Irving Kaplansky, An introduction to differential algebra, Publ. Inst. Math. Univ. Nancago, No. 5, Hermann, Paris, 1957. MR 0093654
9. N. Katz, A conjecture in the arithmetic theory of differential equations, Bull. Soc. Math. France 110 (1982), 203--239.
Nicholas M. Katz, Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124, Princeton University Press, Princeton, NJ, 1990. MR 1081536, DOI 10.1515/9781400882434
Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54, Academic Press, New York-London, 1973. MR 0568864
J. Kovacic, On the inverse problem in the Galois theory of differential fields. II, Ann. of Math. (2) 93 (1971), 269–284. MR 285514, DOI 10.2307/1970775
Michio Kuga, Galois’ dream: group theory and differential equations, Birkhäuser Boston, Inc., Boston, MA, 1993. Translated from the 1968 Japanese original by Susan Addington and Motohico Mulase. MR 1199112, DOI 10.1007/978-1-4612-0329-2
15. C. Mitschi and M. Singer, Connected linear groups as differential Galois groups, to appear in J. Algebra.
Jean-Pierre Ramis, Phénomène de Stokes et filtration Gevrey sur le groupe de Picard-Vessiot, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 5, 165–167 (French, with English summary). MR 801953
Jean-Pierre Serre, Gèbres, Enseign. Math. (2) 39 (1993), no. 1-2, 33–85 (French). MR 1225256
Michael F. Singer and Felix Ulmer, Galois groups of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 9–36. MR 1237348, DOI 10.1006/jsco.1993.1032
- 1.
- Y. André, Quatre descriptions des groupes de Galois différentiels, Sém. Algèbre Paris 86/87, Lecture Notes in Math., vol. 1296, Springer, 1988. MR 0932051
- 2.
- B. L. J. Braaksma and M. van der Put, Analytic and algebraic aspects of complex analytic differential equations, preprint, Groningen, 1994.
- 3.
- F. Beukers, D. Brownawell, and G. Heckman, Siegel normality, Ann. of Math. 127 (1988), 279--308. MR 0932298
- 4.
- L. Breen, Tannakian categories, Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 337--376. MR 1265536
- 5.
- P. Deligne, Catégories tannakiennes, Prog. Math., vol. 87, Birkhäuser, Boston, MA, 1990, pp. 111--195. MR 1106898
- 6.
- A. Fahim, Extensions galoisiennes d'algèbres différentielles, Publ. IRMA Lille, vol. 31, 1993, 10; C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 1--4. MR 1149627
- 7.
- E. Galois, Mémoire sur les conditions de résolubilité des équations par radicaux (R. Bourgne and J.-P. Azra, eds.), Gauthiers-Villars, 1962. [The quotation reads as follows: ``que toute fonction des racines, déterminable rationnellement, soit invariable par ces substitutions.'']
- 8.
- I. Kaplansky, An introduction to differential algebra, Hermann, 1957. MR 0093654
- 9.
- N. Katz, A conjecture in the arithmetic theory of differential equations, Bull. Soc. Math. France 110 (1982), 203--239.
- 10.
- ------, Exponential sums and differential equations, Ann. of Math. Studies, vol. 124, Princeton Univ. Press, 1990. MR 1081536
- 11.
- E. Kolchin, Existence theorems connected with the Picard-Vessiot theory of homogeneous LODE, Bull. Amer. Math. Soc. 54 (1948), 927--932. MR 10:349a
- 12.
- ------, Differential algebra and algebraic groups, Academic Press, 1973. MR 0568864
- 13.
- J. Kovacic, On the inverse problem in the Galois theory of differential fields, Ann. of Math. 93 (1971), 269--284. MR 0285514
- 14.
- M. Kuga, Galois' dream: Group theory and differential equations, Birkhäuser, Boston, MA, 1993. MR 1199112
- 15.
- C. Mitschi and M. Singer, Connected linear groups as differential Galois groups, to appear in J. Algebra.
- 16.
- J.-P. Ramis, Phénomène de Stokes et filtration Gevrey sur le groupe de Picard-Vessiot, C.R. Acad. Sci. Paris Sér. I Math. 301 (1985), 165--167. MR 0801953
- 17.
- J.-P. Serre, Gèbres, Enseign Math. 39 (1993), 33--85. MR 1225256
- 18.
- M. Singer and F. Ulmer, Galois groups of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), 1--36. MR 1237348
Review Information:
Reviewer:
D. Bertrand
Affiliation:
Institut de Mathématiques, Université de Paris VI
Email:
bertrand@mathp6.jussieu.fr
Journal:
Bull. Amer. Math. Soc.
33 (1996), 289-294
DOI:
https://doi.org/10.1090/S0273-0979-96-00652-0
Review copyright:
© Copyright 1996
American Mathematical Society