Gaussian measures in traditional and not so traditional settings
HTML articles powered by AMS MathViewer
- by Daniel W. Stroock PDF
- Bull. Amer. Math. Soc. 33 (1996), 135-155 Request permission
Abstract:
This article is intended to provide non-specialists with an introduction to integration theory on pathspace.References
- Dominique Bakry and Michel Émery, Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 15, 775–778 (French, with English summary). MR 772092
- Martin T. Barlow and Edwin A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), no. 4, 543–623. MR 966175, DOI 10.1007/BF00318785
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- Jean-Michel Bismut, Large deviations and the Malliavin calculus, Progress in Mathematics, vol. 45, Birkhäuser Boston, Inc., Boston, MA, 1984. MR 755001
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
- Bruce K. Driver, A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold, J. Funct. Anal. 110 (1992), no. 2, 272–376. MR 1194990, DOI 10.1016/0022-1236(92)90035-H
- Bruce K. Driver, A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold, Trans. Amer. Math. Soc. 342 (1994), no. 1, 375–395. MR 1154540, DOI 10.1090/S0002-9947-1994-1154540-2
- E. B. Dynkin, Markov processes. Vols. I, II, Die Grundlehren der mathematischen Wissenschaften, Band 121, vol. 122, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. MR 0193671, DOI 10.1007/978-3-662-00031-1
- J. Eells and K. D. Elworthy, Stochastic dynamical systems, Control theory and topics in functional analysis (Internat. Sem., Internat. Centre Theoret. Phys., Trieste, 1974) Internat. Atomic Energy Agency, Vienna, 1976, pp. 179–185. MR 0516923
- Enchev, O. & Stroock, D., Towards a Riemannian geometry on the path space over a Riemannian manifold (to appear in J. Funct. Anal.).
- —, Pinned Brownian and its perturbations (to appear in Adv. in Math.).
- Shizan Fang and Paul Malliavin, Stochastic analysis on the path space of a Riemannian manifold. I. Markovian stochastic calculus, J. Funct. Anal. 118 (1993), no. 1, 249–274. MR 1245604, DOI 10.1006/jfan.1993.1145
- Ramesh Gangolli, On the construction of certain diffusions on a differentiable manifold, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 406–419 (1964). MR 165590, DOI 10.1007/BF00533608
- James Glimm and Arthur Jaffe, Quantum physics, 2nd ed., Springer-Verlag, New York, 1987. A functional integral point of view. MR 887102, DOI 10.1007/978-1-4612-4728-9
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Kiyoshi Itô, The Brownian motion and tensor fields on Riemannian manifold, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 536–539. MR 0176500
- Shigeo Kusuoka, A diffusion process on a fractal, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985) Academic Press, Boston, MA, 1987, pp. 251–274. MR 933827
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Paul Malliavin, Formules de la moyenne, calcul de perturbations et théorèmes d’annulation pour les formes harmoniques, J. Functional Analysis 17 (1974), 274–291 (French). MR 0385932, DOI 10.1016/0022-1236(74)90041-x
- Malliavin, P. and Stroock, D., Short time behavior of the heat kernel and its logarithmic derivatives, submitted to J. Differential Geom.
- Barry Simon, Functional integration and quantum physics, Pure and Applied Mathematics, vol. 86, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 544188
- Daniel W. Stroock, Probability theory, an analytic view, Cambridge University Press, Cambridge, 1993. MR 1267569
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
- Stroock, D. & Zeitouni, O., Variations on a theme by Bismut (to appear).
- Symansik, K., Euclidean quantum field theory, I. equations for a scalar model, J. Math. Phys. 7 (1966), 510–525.
- Wiener, N., Differential Space, J. Math. Physics 2 (1923), 131–174.
Additional Information
- Daniel W. Stroock
- Affiliation: MIT 2-272, 77 Massachusetts Ave., Cambridge, Massachusetts 02139
- Email: dws@math.mit.edu
- © Copyright 1996 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 33 (1996), 135-155
- MSC (1991): Primary 60J65; Secondary 35K05, 53C99
- DOI: https://doi.org/10.1090/S0273-0979-96-00655-6
- MathSciNet review: 1362627