Calculus of embeddings
HTML articles powered by AMS MathViewer
- by Michael Weiss PDF
- Bull. Amer. Math. Soc. 33 (1996), 177-187 Request permission
Abstract:
Let $M$ and $N$ be smooth manifolds, where $M\subset N$ and $\dim (N)-\dim (M)\ge 3$. A disjunction lemma for embeddings proved recently by Goodwillie leads to a calculation up to extension problems of the base point component of the space of smooth embeddings of $M$ in $N$. This is mostly in terms of $\mathbf{imm}(M,N)$, the space of smooth immersions, which is well understood, and embedding spaces $\mathbf{emb}(S,N)$ for finite subsets $S$ of $M$ with few elements. The meaning of few depends on the precision desired.References
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Dan Burghelea, Richard Lashof, and Melvin Rothenberg, Groups of automorphisms of manifolds, Lecture Notes in Mathematics, Vol. 473, Springer-Verlag, Berlin-New York, 1975. With an appendix (“The topological category”) by E. Pedersen. MR 0380841, DOI 10.1007/BFb0079981
- Emmanuel Dror Farjoun, Homotopy and homology of diagrams of spaces, Algebraic topology (Seattle, Wash., 1985) Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp. 93–134. MR 922924, DOI 10.1007/BFb0078739
- Thomas G. Goodwillie, Calculus. I. The first derivative of pseudoisotopy theory, $K$-Theory 4 (1990), no. 1, 1–27. MR 1076523, DOI 10.1007/BF00534191
- Thomas G. Goodwillie, Calculus. II. Analytic functors, $K$-Theory 5 (1991/92), no. 4, 295–332. MR 1162445, DOI 10.1007/BF00535644
- T.G.Goodwillie, Calculus III: The Taylor series of a homotopy functor, in preparation.
- Thomas Gehret Goodwillie, A multiple disjunction lemma for smooth concordance embeddings, Mem. Amer. Math. Soc. 86 (1990), no. 431, viii+317. MR 1015675, DOI 10.1090/memo/0431
- T.G.Goodwillie, Title unknown (disjunction lemma for diffeomorphisms?), 2 preprints/in preparation, Brown University.
- T.G.Goodwillie and M.Weiss, Embeddings from the point of view of immersion theory, Part II, Preprint 1995, approx. 7 pp.
- A. Haefliger, Lectures on the theorem of Gromov, Proceedings of Liverpool Singularities Symposium, II (1969/1970), Lecture Notes in Math., Vol. 209, Springer, Berlin, 1971, pp. 128–141. MR 0334241
- André Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962/63), 155–176 (French). MR 157391, DOI 10.1007/BF02566970
- André Haefliger and Valentin Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. 23 (1964), 75–91 (French). MR 172296, DOI 10.1007/BF02684311
- A. E. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–21. MR 520490
- Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276. MR 119214, DOI 10.1090/S0002-9947-1959-0119214-4
- Daniel M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294–329. MR 131451, DOI 10.1090/S0002-9947-1958-0131451-0
- J. Peter May, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. Reprint of the 1967 original. MR 1206474
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- G.Meng, Thesis, Brown University (1993).
- C.Morlet, Plongement et automorphismes de variétés, Preprint, Collège de France, Cours Peccot (1969).
- Stephen Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327–344. MR 105117, DOI 10.2307/1970186
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- M.Weiss, Embeddings from the point of view of immersion theory, Part I, Preprint 1995, 25 pp.
Additional Information
- Michael Weiss
- Affiliation: Dept. of Math., University of Notre Dame, Notre Dame, Indiana 46556
- MR Author ID: 223956
- Email: weiss.13@nd.edu
- Additional Notes: Partially supported by the NSF.
- © Copyright 1996 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 33 (1996), 177-187
- MSC (1991): Primary 57R40, 57R42
- DOI: https://doi.org/10.1090/S0273-0979-96-00657-X
- MathSciNet review: 1362629