Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Yuri A. Kuznetsov
Title: Elements of applied bifurcation theory
Additional book information: Applied Mathematical Sciences, vol. 112, Springer-Verlag, Berlin and New York, 1995, xv+515 pp., ISBN 0-387-94418-4, $59.95$

References [Enhancements On Off] (What's this?)

  • A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maĭer, Theory of bifurcations of dynamic systems on a plane, Halsted Press [A division of John Wiley & Sons], New York-Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem-London, 1973. Translated from the Russian. MR 0344606
  • A. Andronov and L. Pontryagin, Systémes grossieres, Dokl. Acad. Nauk SSSR 14 (1937), 247–251.
  • V. I. Arn$^\prime$old, V. Afraimovich, Y. Il$^\prime$yashenko, and L. Sil$^\prime$nikov, Theory of bifurcations, vol. 5, Encyclopaedia of Mathematical Sciences (V. I. Arn$^\prime$old, ed.), Springer-Verlag, Berlin and New York, 1994.
  • V. I. Arnol′d, Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York-Berlin, 1983. Translated from the Russian by Joseph Szücs; Translation edited by Mark Levi. MR 695786
  • D. K. Arrowsmith and C. M. Place, An introduction to dynamical systems, Cambridge University Press, Cambridge, 1990. MR 1069752
  • R. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet 1 (4) (1981), 373–388.
  • G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, RI, 1927.
  • A. Chenciner, Courbes fermes invariantes non normalement hyperboliques au voisinage d’une bifurcation de Hopf dégénérée de diffeomorphismes de $\mathbb R^2$, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 507–510.
  • Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633
  • F. Dumortier, R. Roussarie, J. Sotomayor, and H. Żołądek, Bifurcations of planar vector fields, Lecture Notes in Mathematics, vol. 1480, Springer-Verlag, Berlin, 1991. Nilpotent singularities and Abelian integrals. MR 1166189
  • J. Guckenheimer and P. J. Holmes, Nonlinear oscillations, dynamical systems & bifurcations of vector fields, Springer-Verlag, Berlin and New York, 1983.
  • J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale; Applied Mathematical Sciences, Vol. 19. MR 0494309
  • H. Poincaré, Mémoire sur les courbes definies par les équations differentielles I-IV, Oeuvre I, Gauthier-Villar, Paris, 1928.
  • L. P. Šil′nikov, A case of the existence of a denumerable set of periodic motions, Dokl. Akad. Nauk SSSR 160 (1965), 558–561 (Russian). MR 0173047
  • S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI
  • Floris Takens, Forced oscillations and bifurcations, Applications of global analysis, I (Sympos., Utrecht State Univ., Utrecht, 1973) Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, pp. 1–59. Comm. Math. Inst. Rijksuniv. Utrecht, No. 3-1974. MR 0478235
  • Stephen Wiggins, Global bifurcations and chaos, Applied Mathematical Sciences, vol. 73, Springer-Verlag, New York, 1988. Analytical methods. MR 956468

Review Information:

Reviewer: David K. Arrowsmith
Affiliation: Queen Mary & Westfield College University of London
Journal: Bull. Amer. Math. Soc. 33 (1996), 377-380
Review copyright: © Copyright 1996 American Mathematical Society