Cayley-Bacharach theorems and conjectures
HTML articles powered by AMS MathViewer
- by David Eisenbud, Mark Green and Joe Harris PDF
- Bull. Amer. Math. Soc. 33 (1996), 295-324 Request permission
Abstract:
A theorem of Pappus of Alexandria, proved in the fourth century A.D., began a long development in algebraic geometry. In its changing expressions one can see reflected the changing concerns of the field, from synthetic geometry to projective plane curves to Riemann surfaces to the modern development of schemes and duality. We survey this development historically and use it to motivate a brief treatment of a part of duality theory. We then explain one of the modern developments arising from it, a series of conjectures about the linear conditions imposed by a set of points in projective space on the forms that vanish on them. We give a proof of the conjectures in a new special case.References
- I. Bacharach, Uber den Cayley’schen Schnittpunktsatz, Math. Ann. 26 (1886), 275–299.
- Carl B. Boyer, A history of mathematics, 2nd ed., John Wiley & Sons, Inc., New York, 1991. With a foreword by Isaac Asimov; Revised and with a preface by Uta C. Merzbach. MR 1094813
- A. Brill and M. Noether, Uber die algebraischen Functionen und ihre Anwendung in der Geometrie, Math. Ann. 7 (1874), 269–310.
- H. S. M. Coxeter, Projective geometry, 2nd ed., University of Toronto Press, Toronto, Ont., 1974. MR 0346652, DOI 10.1007/978-1-4612-6385-2
- A. Cayley, On the intersection of curves, Cambridge Math. J. 3 (1843), 211–213; Collected math papers I, vols. 25–27, Cambridge Univ. Press, Cambridge, 1889.
- M. Chasles, Traité des sections coniques, Gauthier-Villars, Paris, 1885.
- E. D. Davis, A. V. Geramita, and F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93 (1985), no. 4, 593–597. MR 776185, DOI 10.1090/S0002-9939-1985-0776185-6
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Joe Harris, Curves in projective space, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427
- A. Verschoren, Pour une géometrie algébrique noncommutative, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980) Lecture Notes in Math., vol. 867, Springer, Berlin-New York, 1981, pp. 319–350 (French). MR 633525
- David Eisenbud, Mark Green, and Joe Harris, Higher Castelnuovo theory, Astérisque 218 (1993), 187–202. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). MR 1265314
- —, Hilbert functions and complete intersections (in preparation).
- Ph. Ellia and Ch. Peskine, Groupes de points de ${\mathbf P}^2$: caractère et position uniforme, Algebraic geometry (L’Aquila, 1988) Lecture Notes in Math., vol. 1417, Springer, Berlin, 1990, pp. 111–116 (French). MR 1040554, DOI 10.1007/BFb0083336
- Anthony V. Geramita, Martin Kreuzer, and Lorenzo Robbiano, Cayley-Bacharach schemes and their canonical modules, Trans. Amer. Math. Soc. 339 (1993), no. 1, 163–189. MR 1102886, DOI 10.1090/S0002-9947-1993-1102886-5
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Morris Kline, Mathematical thought from ancient to modern times, Oxford University Press, New York, 1972. MR 0472307
- F. S. Macaulay, Algebraic theory of modular systems, Cambridge Tracts in Math., vol. 19, Cambridge Univ. Press, Cambridge, 1916.
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- M. Noether, Uber ein Satz aus der Theorie der algebraischen Funktionen, Math. Ann. 6 (1873), 351–359.
- D. J. Struik (ed.), A source book in mathematics, 1200–1800, Harvard University Press, Cambridge, Mass., 1969. MR 0238647
Additional Information
- David Eisenbud
- Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254-9110
- MR Author ID: 62330
- ORCID: 0000-0002-5418-5579
- Email: eisenbud@math.brandeis.edu
- Mark Green
- Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
- MR Author ID: 76530
- Email: mlg@math.ucla.edu
- Joe Harris
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138-2901
- Email: harris@abel.math.harvard.edu
- Received by editor(s): March 24, 1995
- Received by editor(s) in revised form: November 3, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 33 (1996), 295-324
- MSC (1991): Primary 14N05, 14H05, 14-02; Secondary 13-03, 13H10
- DOI: https://doi.org/10.1090/S0273-0979-96-00666-0
- MathSciNet review: 1376653