Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Haruzo Hida
Title: Elementary theory of $L$-functions and Eisenstein series
Additional book information: London Mathematical Society Student Texts, Vol. 26, Cambridge University Press, Cambridge, 1993, x + 386 pp., ISBN 0-521-43411-4, $69.95$, hardback; ISBN 0-521-43569-2, paperback

References [Enhancements On Off] (What's this?)

1.
A. Beilinson, Higher regulators and values of $L$-functions, J. Soviet Math. 30 (1985), 2036-2070.
  • Spencer Bloch and Kazuya Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400. MR 1086888
  • J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), no. 3, 223–251. MR 463176, DOI 10.1007/BF01402975
  • P. Deligne, Valeurs de fonctions $L$ et périodes d’intégrales, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 313–346 (French). With an appendix by N. Koblitz and A. Ogus. MR 546622
  • Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
  • B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48. MR 830037, DOI 10.1007/BF01388731
  • B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
  • M. Rapoport, N. Schappacher, and P. Schneider (eds.), Beilinson’s conjectures on special values of $L$-functions, Perspectives in Mathematics, vol. 4, Academic Press, Inc., Boston, MA, 1988. MR 944987
  • Karl Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25–68. MR 1079839, DOI 10.1007/BF01239508
  • Karl Rubin, Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 64 (1981), no. 3, 455–470. MR 632985, DOI 10.1007/BF01389277
  • 11.
    J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Sem. Bourbaki exposé 306, 1965-66, Dix exposés sur la cohomologie des Schémas, North Holland, 1968.
  • Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, DOI 10.2307/2118560
  • Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI 10.2307/2118559

  • Review Information:

    Reviewer: Glenn Stevens
    Affiliation: Boston University
    Email: ghs@math.bu.edu
    Journal: Bull. Amer. Math. Soc. 34 (1997), 67-71
    DOI: https://doi.org/10.1090/S0273-0979-97-00696-4
    Review copyright: © Copyright 1997 American Mathematical Society