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Over the past few years there has been a revival of interest in the Spinc Dirac
operator from two sources: symplectic geometry and the Seiberg-Witten equations
on 4-manifolds. (The main impetus behind Duistermaat’s new book is the applica-
tion to symplectic geometry.) On the other hand, it is the connection to K-theory
which motivated the introduction of Spinc in the late ’50s and early ’60s.

Recall that the special orthogonal group SO(n) consists of n×n real orthogonal
matrices of determinant one. It is connected but not simply connected. The con-
nected double cover is the Lie group Spin(n). For small n we can identify Spin(n)
with familiar groups: Spin(2) ∼= T, Spin(3) ∼= SU(2), Spin(4) ∼= SU(2) × SU(2),
Spin(5) ∼= Sp(2), and Spin(6) ∼= SU(4). Here ‘T’ is the circle group of unit norm
complex numbers. Perhaps the most salient feature of the Spin group is its spin
representation S, which splits for even n into S ∼= S+ ⊕ S−. In linear algebra a real
vector space V with an orientation and inner product has a symmetry group SO(V )
which is isomorphic to SO(n); any oriented orthonormal basis determines an iso-
morphism. This is the Euclidean geometry of distance, angles, and orientation.
It is hard to give such a cogent description of Spin geometry. Certainly we can
say that a Spin structure on V is the extra structure needed to lift the symmetry
group from SO(V ) to a group Spin(V ) which is isomorphic to Spin(n), and it is
easy to craft a precise definition out of that idea. But the extra structure has no
direct description in terms of familiar geometric notions like distance, angle, and
orientation. Passing now to nonlinear smooth spaces—manifolds—we can ask for
an orientation and inner product on each tangent space. Here the topology of the
manifold X may introduce obstructions. There are none for the inner product,
but not every manifold admits an orientation: the obstruction is the first Stiefel-
Whitney class w1(X) ∈ H1(X ;Z/2Z). If w1(X) vanishes, then we can make X into
an oriented Riemannian manifold. Now there is an obstruction to finding a Spin
structure: the second Stiefel-Whitney class w2(X) ∈ H2(X ;Z/2Z). If w2(X) van-
ishes, we can introduce a Spin structure on X .

For many applications the Spin condition is too restrictive. For example, not
every complex manifold X is Spin. For such manifolds the second Stiefel-Whitney
class w2(X) = c1(X) (mod 2) is the mod 2 reduction of the first Chern class, and
so w2(X) vanishes only if c1(X) is divisible by 2. Any closed oriented manifold
of dimension ≤ 3 admits a Spin structure, but a closed oriented simply connected
4-manifold only admits a Spin structure if the intersection form is even. (So, for
example, the complex projective plane CP2 is not Spin.) Spinc is a more gen-
eral structure which exists in many important geometric situations. The class of
manifolds which admit Spinc structures includes (almost) complex manifolds, sym-
plectic manifolds, and oriented 4-manifolds. This explains the importance of Spinc

and why it has re-emerged recently in geometry and global analysis.
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The earliest reference I could find to the group Spinc(n) is a Bourbaki seminar
exposé of Hirzebruch from 1959 [H, §5.4]. Here Spinc(n) is defined as the subgroup
of Spin(n + 2) which lies over SO(n) × SO(2) ⊂ SO(n + 2). Equivalently, it
is the quotient of Spin(n) × T by the obvious diagonal Z/2Z subgroup. Again
we can recognize Spinc(n) for small n: Spinc(2) ∼= T × T, Spinc(3) ∼= U(2),
and Spinc(4) ∼= {〈A,B〉 ∈ U(2) × U(2) : detA = detB}. Note that there are
homomorphisms

Spinc(n) −→ SO(n),(1)

det : Spinc(n) −→ T.(2)

The first of these allows us to define the notion of a Spinc structure on an oriented
real inner product space V , just as above we defined a Spin structure. Again I do
not know a simple geometric description of this structure in terms of familiar geo-
metric notions. The second homomorphism means that a Spinc vector space V has
a canonical determinant line DetV , which is a one dimensional complex hermitian
vector space. Note also that the spin group Spin(n) is a subgroup of Spinc(n)—
it is the kernel of (2)—and the spin representation S extends to Spinc(n). (The
central T—the kernel of (1)—acts by scalar multiplication on S.) An oriented
Riemannian manifold X admits a Spinc structure if and only if the integral third
Stiefel-Whitney class W3(X) ∈ H3(X ;Z) vanishes. This is equivalent to the exis-
tence of a class c ∈ H2(X ;Z) whose reduction mod 2 is w2(X). The determinant
construction, based on (2), implies that a Spinc manifold X has a determinant line
bundle DetX → X whose first Chern class c has mod 2 reduction equal to w2(X).

One final piece of background is the connection to hermitian geometry. At
the most fundamental level we can say that the homomorphism U(n) → SO(2n)
lifts to a homomorphism U(n) → Spinc(n). This means that a hermitian vector
space V—that is, a complex vector space with a hermitian inner product—carries a
canonical Spinc structure. The determinant line of the Spinc structure is the same
as the complex determinant line of V . In the nonlinear case we obtain a canonical
Spinc structure on an almost complex manifold with a hermitian metric (since each
tangent space is a hermitian vector space). There are two important special cases:
(i) symplectic manifolds with compatible almost complex structures and (ii) Kähler
manifolds.

Returning to Hirzebruch, his celebrated Riemann-Roch theorem in the ’50s led
to the conclusion that certain rational combinations of Chern numbers on a smooth
projective algebraic variety are integers. More precisely, if X is such a manifold,
then the basic example is the integer

Todd(X)[X ] = ec/2Â(X)[X ].(3)

The Todd genus is initially defined in terms of Chern classes, but the right hand
side expresses it in terms of the first Chern class c = c1(X) and the Â-genus, which
is a rational combination of the Pontrjagin classes. Now any real manifold has
Pontrjagin classes and the natural generalization of the first Chern class to real
geometry is the determinant of a Spinc structure. This led to the conjecture that
(3) is an integer on any Spinc manifold X .1 The special case c = 0 pertains to Spin
manifolds and generalizes the well-known theorem of Rohlin that the signature of

1At the time it was stated in terms of Stiefel-Whitney classes and the term ‘c1-manifold’ was
sometimes used instead of ‘Spinc manifold’.
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a spin 4-manifold is divisible by 16.2 One of the important immediate applications
of the Atiyah-Hirzebruch differentiable Riemann-Roch theorem [H] is a proof of
this conjecture3 which identifies (3) as a certain integer defined in K-theory. Al-
ready in [H] the spin representation appears, but the whole story was put into a
definitive context a few years later in the work of Atiyah, Bott, and Shapiro [ABS]
where the group Spinc(n) is embedded in the complex Clifford algebra and the
connection between Clifford algebras and K-theory is firmly established. Briefly,
the Spinc condition is the orientation condition in K-theory which one needs to de-
fine “integration”. At about this time Atiyah and Singer brought elliptic operators
into the game: the principal symbol of such an operator determines an element in
the K-theory of the cotangent bundle. They introduced the Spinc Dirac operator,
whose principal symbol—Clifford multiplication on the spin representation—is the
orientation class in K-theory. Their index theorem [AS] expresses the index of an
elliptic operator as an integral in K-theory (on the cotangent bundle). Recall that
the index of an elliptic operator D is defined as

indexD = dim kerD − dim kerD∗.(4)

Finally, then, we have the more familiar interpretation of the integer (3) as the
index of the Spinc Dirac operator.

A Spinc manifold X carries a spin bundle SX → X determined by the spin
representation. The same is true on a Spin manifold, and in that case the Levi-
Civita connection determines a connection on SX which in turn is used to define
the Dirac operator. However, on a Spinc manifold we must specify an additional
piece of data: a connection on the determinant line bundle DetX . This is important
in the two applications mentioned at the beginning of the review. In symplectic
geometry X is an almost Kähler manifold, that is, a symplectic manifold with a
compatible almost complex structure. In this case there is a canonical choice for the
Spinc connection. On the other hand, in the Seiberg-Witten theory the connection
on DetX is one of the variables in the equations.

On a hermitian almost complex manifold X we identify the spinor fields with
the differential forms of type (0, q) (summed over q). On such forms we have what
Duistermaat terms the “Dolbeault-Dirac” operator, denoted ∂̄ + ∂̄∗. This is the
Spinc Dirac operator in case X is Kähler, but in general it differs. The explanation
of this fact, together with an exposition of some basics about Spinc(n), Clifford
algebras, and Dirac operators, occupies the first several chapters of Duistermaat’s
book. He emphasizes the connection with hermitian geometry, an important point
of view which provides a good intuition. He carefully discusses the principal bundle
of frames as it plays a crucial role in the proof of the index theorem discussed later.

The first proofs of the index theorem in the ’60s relied heavily on algebraic
topology—bordism or K-theory—whereas most modern accounts follow the heat
equation methods pioneered by Patodi, Gilkey, and others in the early ’70s (follow-
ing an important paper of McKean and Singer). These heat equation proofs express
the index as a difference of traces of heat kernels, which is then evaluated in the
small time limit in terms of local geometry. For Dirac operators this limit exists
pointwise and leads to a local version of the index theorem. The early accounts of
this method [ABP] were aimed at the global index theorem for general operators,

2Actually, there is a refinement of the conjecture for spin manifolds which is the proper gen-
eralization of Rohlin’s theorem.

3A different proof had previously been given by Milnor.
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so did not emphasize this local version. Also, they used invariant theory and the
computation of special cases to pin down the exact form of the index (3). Two new
proofs appeared in the ’80s which derive the formula (3) more directly and show
more clearly where the Clifford algebra symmetry enters to give a local limit. The
first is a scaling argument due to Getzler [G] which finds the Â-genus from Mehler’s
formula for the heat kernel of the harmonic oscillator. The second is an argument
due to Berline and Vergne [BV] which expresses the heat kernels on X in terms

of scalar heat kernels on the frame bundle. Then the Â-genus emerges from the
formula for the differential of the exponential map on a Lie group. A few remarks:
First, all of the heat equation proofs apply to any operator which can be written
locally as a Dirac operator. Second, there are many important generalizations of
the basic index theorem in the papers of Atiyah and Singer [AS] which for the
most part have not been derived by heat kernel methods. Finally, the heat kernel
method has been used to go beyond the topological invariants of these papers to
define geometric invariants of Dirac operators (η-invariants, Quillen metrics, etc.)
which have important applications in geometry.

Duistermaat’s book recounts the Berline-Vergne proof of the index theorem.
Following the introductory material, there are three chapters about the heat kernel.
Here we find a beautiful exposition of the asymptotic expansion, though the proof
that it is asymptotic to the true solution is deferred to other sources. These ideas
are then applied on the principal bundle of frames, culminating in the asymptotic
expansion needed to prove the index theorem. The rest of the proof relies on some
linear algebra which is explained in a later chapter.

Duistermaat also treats an important generalization of the index theorem, and
one which is crucial for current applications to symplectic geometry. This is the
Lefschetz fixed point formula.4 Suppose G is a compact Lie group which acts on a
Spinc manifold X by Spinc transformations. This means that the differential of any
element of G is a Spinc transformation of the tangent spaces. Then G commutes
with the Dirac operator and so acts on the kernel and cokernel. The difference of
these representations is a generalization of the numerical index (4). The Lefschetz
formula expresses the character of this virtual representation in terms of topological
data on fixed point sets, which are smooth manifolds (whose components may have
varying dimension). The Berline-Vergne proof of the index theorem extends to
give the Lefschetz formula—again in terms of differential forms—as explained by
Duistermaat.

Duistermaat also includes a chapter on the extension of the Lefschetz theorem
to Spinc orbifolds. An orbifold is a space which is locally the quotient of a smooth
manifold by the action of a finite group. If M is a smooth manifold on which a
compact Lie group G acts locally freely, then the quotient M/G is an orbifold.
Such quotients arise in symplectic geometry as “Marsden-Weinstein reductions”,
and this is the main motivation behind the discussion here. I do not know of
another account of the index and Lefschetz theorems for orbifolds in book form.
Many readers (including this reviewer) will welcome the inclusion of this material.
In the later chapters the reader will also find beautiful summaries of Chern-Weil

4Originally it was proved by Atiyah and Bott [AB] for isolated fixed points. Then the Atiyah-
Singer index theorem [AS] was combined with the localization theorem of Atiyah-Segal [ASe] to
derive the more general formula.
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theory, equivariant cohomology via differential forms, and some basics of symplectic
manifolds and group actions.

Duistermaat’s book complements nicely the books by Berline, Getzler, and
Vergne [BGV] and Roe [R]. The former is the most comprehensive and includes
both modern heat equation proofs of the index theorem as well as many general-
izations. Roe employs the Getzler scaling method. He discusses a basic case of the
Lefschetz formula and other topics as well (such as Witten’s deformation of the
Morse complex and Atiyah’s index theorem for infinite covers). In Duistermaat’s
book the student of the index theorem is fortunate to have another account of the
Berline-Vergne proof (which closely follows [BGV]) together with a new set of ap-
plications. Each of these books has a different strength and a different emphasis. I
found some of the notation in Duistermaat’s book heavy, and there were a few small
errors here and there. But the reader will be abundantly compensated by insightful
observations throughout and by the later chapters on orbifolds and applications.

Let me close by briefly describing the use of Spinc over the past few years in
Seiberg-Witten theory and in symplectic geometry. (See [D] for a nice survey of
early developments in Seiberg-Witten theory.) As mentioned earlier, any closed
oriented 4-manifold X admits a Spinc structure.5 The set of all Spinc structures
is an affine space for H2(X ;Z), and so can be identified with the set of equiva-
lence classes of complex line bundles once a basepoint is chosen. (This is true in
any dimension.) Now a Kähler surface X has a canonical Spinc structure, and
any other is obtained by specifying a complex line bundle L. In this case a solu-
tion to the (nonlinear) Seiberg-Witten equations is a holomorphic structure on L
together with a holomorphic section of L,6 or better said a divisor on X . Spinc

geometry allows a generalization of equations for a divisor—the Seiberg-Witten
equations—which leads to topological invariants. The intermediate case between
a general 4-manifold and a Kähler surface is a symplectic 4-manifold, and in an
important series of papers [T1], [T2], [T3] Taubes shows that with a suitable per-
turbation the Seiberg-Witten equations on an almost Kähler manifold describe
pseudo-holomorphic curves , the almost Kähler analog of divisors. This has led to
many advances in symplectic topology.

The (linear) Spinc Dirac operator has appeared recently in many papers in sym-
plectic geometry (in arbitrary dimensions), and as mentioned above this is Duis-
termaat’s primary reason for writing this book. Suppose X is a symplectic man-
ifold. Let CX denote the space of compatible almost complex structures; CX is
contractible. Now for each J ∈ CX there is a canonical Spinc connection and so a
Spinc Dirac operator DJ . Of course, its index is independent of J ∈ CX . It is an
intriguing idea to treat the virtual vector space

Q(X, J) = kerDJ − kerD∗J(5)

as a “quantization” of the symplectic manifold X . For example, in case a compact
group acts symplectically on X one would like to say that “quantization commutes
with reduction,” and as a statement about the dimension this was conjectured by
Guillemin and Sternberg over a decade ago. (They also proved an important special
case.) Recently, new techniques, notably the “symplectic cut” of Lerman [L], have
been used to give a proof of this conjecture [M] using the Spinc quantization for a

5This is an old result of Hirzebruch and Hopf [HH].
6or in some cases a holomorphic differential with values in L∗.
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G-invariant choice of J .7 But to be really useful as a quantization one needs more
than the dimension of (5)—one needs the actual (virtual) Hilbert space—and so it
is important to come to grips with the dependence on J . It remains to be seen if
Spinc will thus come to the fore in some new version of geometric quantization.
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