The mathematical enterprises of Robert Thomason
HTML articles powered by AMS MathViewer
- by Charles A. Weibel PDF
- Bull. Amer. Math. Soc. 34 (1997), 1-13 Request permission
Abstract:
During his career, Bob Thomason was involved in an interesting and varied group of mathematical endeavors. This is a retrospective survey of his contributions.References
- Kenneth S. Brown and Stephen M. Gersten, Algebraic $K$-theory as generalized sheaf cohomology, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 266–292. MR 0347943
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547
- William G. Dwyer and Eric M. Friedlander, Étale $K$-theory and arithmetic, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 453–455. MR 648533, DOI 10.1090/S0273-0979-1982-15013-3
- William Dwyer, Eric Friedlander, Victor Snaith, and Robert Thomason, Algebraic $K$-theory eventually surjects onto topological $K$-theory, Invent. Math. 66 (1982), no. 3, 481–491. MR 662604, DOI 10.1007/BF01389225
- Eric M. Friedlander, Étale $K$-theory. I. Connections with etale cohomology and algebraic vector bundles, Invent. Math. 60 (1980), no. 2, 105–134. MR 586424, DOI 10.1007/BF01405150
- Daniel Grayson, Higher algebraic $K$-theory. II (after Daniel Quillen), Algebraic $K$-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) Lecture Notes in Math., Vol. 551, Springer, Berlin, 1976, pp. 217–240. MR 0574096
- Henri A. Gillet and Robert W. Thomason, The $K$-theory of strict Hensel local rings and a theorem of Suslin, Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983), 1984, pp. 241–254. MR 772059, DOI 10.1016/0022-4049(84)90037-9
- M. Harada, A proof of the Riemann-Roch theorem, Ph.D. thesis, Johns Hopkins University, Baltimore, 1987.
- Dana May Latch, Robert W. Thomason, and W. Stephen Wilson, Simplicial sets from categories, Math. Z. 164 (1979), no. 3, 195–214. MR 516607, DOI 10.1007/BF01182267
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547
- J. P. May and R. Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978), no. 3, 205–224. MR 508885, DOI 10.1016/0040-9383(78)90026-5
- Erik K. Pedersen and Charles A. Weibel, $K$-theory homology of spaces, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 346–361. MR 1000388, DOI 10.1007/BFb0085239
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432, DOI 10.1007/BFb0097438
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, DOI 10.1016/0040-9383(74)90022-6
- M. Artin, A. Grothendieck and J.-L. Verdier, Théorie de Topos et Cohomologie Étale des Schémas (SGA 4), Lecture Notes in Math., vols. 269,270,305, Springer-Verlag, 1972–73.
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
- A. Suslin, Algebraic $K$-theory and Motivic Cohomology, Proc. International Congress of Mathematicians, Zürich 1994, vol. 1, Birkhäuser, 1995, pp. 342–351.
- R. W. Thomason, A note on spaces with normal product with some compact space, Proc. Amer. Math. Soc. 44 (1974), 509–510. MR 367923, DOI 10.1090/S0002-9939-1974-0367923-8
- R.W. Thomason, Homotopy colimits in $\mathbf {Cat}$, with applications to algebraic $K$-theory and loop space theory, Ph.D. thesis, 124 pages, Princeton University, 1977, available from University Microfilms, Ann Arbor, MI 48104.
- R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91–109. MR 510404, DOI 10.1017/S0305004100055535
- R. W. Thomason, Uniqueness of delooping machines, Duke Math. J. 46 (1979), no. 2, 217–252. MR 534053, DOI 10.1215/S0012-7094-79-04612-X
- R. W. Thomason, Cat as a closed model category, Cahiers Topologie Géom. Différentielle 21 (1980), no. 3, 305–324. MR 591388
- R. W. Thomason, First quadrant spectral sequences in algebraic $K$-theory, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 332–355. MR 561229
- Robert W. Thomason, First quadrant spectral sequences in algebraic $K$-theory via homotopy colimits, Comm. Algebra 10 (1982), no. 15, 1589–1668. MR 668580, DOI 10.1080/00927878208822794
- R. W. Thomason, Beware the phony multiplication on Quillen’s ${\scr A}^{-1}{\scr A}$, Proc. Amer. Math. Soc. 80 (1980), no. 4, 569–573. MR 587929, DOI 10.1090/S0002-9939-1980-0587929-6
- R. W. Thomason, Algebraic $K$-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552. MR 826102, DOI 10.24033/asens.1495
- R. W. Thomason, The Lichtenbaum-Quillen conjecture for $K/l_\ast [\beta ^{-1}]$, Current trends in algebraic topology, Part 1 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 117–139. MR 686114
- R. W. Thomason, Riemann-Roch for algebraic versus topological $K$-theory, J. Pure Appl. Algebra 27 (1983), no. 1, 87–109. MR 680887, DOI 10.1016/0022-4049(83)90032-4
- R. W. Thomason, Bott stability in algebraic $K$-theory, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 389–406. MR 862644, DOI 10.1090/conm/055.1/862644
- R. W. Thomason, The homotopy limit problem, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, R.I., 1983, pp. 407–419. MR 711065
- R. W. Thomason, Absolute cohomological purity, Bull. Soc. Math. France 112 (1984), no. 3, 397–406 (English, with French summary). MR 794741, DOI 10.24033/bsmf.2014
- R. W. Thomason, Algebraic $K$-theory of group scheme actions, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 539–563. MR 921490
- R. W. Thomason, Lefschetz-Riemann-Roch theorem and coherent trace formula, Invent. Math. 85 (1986), no. 3, 515–543. MR 848684, DOI 10.1007/BF01390328
- R. W. Thomason, Comparison of equivariant algebraic and topological $K$-theory, Duke Math. J. 53 (1986), no. 3, 795–825. MR 860673, DOI 10.1215/S0012-7094-86-05344-5
- R. W. Thomason, Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. in Math. 65 (1987), no. 1, 16–34. MR 893468, DOI 10.1016/0001-8708(87)90016-8
- R. W. Thomason, Equivariant algebraic vs. topological $K$-homology Atiyah-Segal-style, Duke Math. J. 56 (1988), no. 3, 589–636. MR 948534, DOI 10.1215/S0012-7094-88-05624-4
- R. W. Thomason, The finite stable homotopy type of some topoi, J. Pure Appl. Algebra 47 (1987), no. 1, 89–104. MR 906404, DOI 10.1016/0022-4049(87)90101-0
- R. W. Thomason, A finiteness condition equivalent to the Tate conjecture over $\mathbf F_q$, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 385–392. MR 991987, DOI 10.1090/conm/083/991987
- R. W. Thomason, Survey of algebraic vs. étale topological $K$-theory, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 393–443. MR 991988, DOI 10.1090/conm/083/991988
- Robert W. Thomason, The local to global principle in algebraic $K$-theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 381–394. MR 1159226
- R. W. Thomason, Une formule de Lefschetz en $K$-théorie équivariante algébrique, Duke Math. J. 68 (1992), no. 3, 447–462 (French). MR 1194949, DOI 10.1215/S0012-7094-92-06817-7
- R. W. Thomason, Le principe de scindage et l’inexistence d’une $K$-theorie de Milnor globale, Topology 31 (1992), no. 3, 571–588 (French). MR 1174260, DOI 10.1016/0040-9383(92)90052-J
- R. W. Thomason, Les $K$-groupes d’un schéma éclaté et une formule d’intersection excédentaire, Invent. Math. 112 (1993), no. 1, 195–215 (French). MR 1207482, DOI 10.1007/BF01232430
- R.W. Thomason, Les $K$-groupes d’un fibré projectif, Algebraic $K$-theory and algebraic topology, NATO ASI Series C, vol. 407, Kluwer, 1993, pp. 243–248.
- R.W. Thomason, The classification of triangulated subcategories, preprint (1995), Compositio Math. (1996), to appear.
- R.W. Thomason, Symmetric monoidal categories model all connective spectra, Theory Appl. Categories 1 (1995), 78–118, (electronic journal http://www.tac.mta.ca/tac/).
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Robert W. Thomason and Thomas F. Trobaugh, Le théorème de localisation en $K$-théorie algébrique, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 16, 829–831 (French, with English summary). MR 978249
- Robert W. Thomason and W. Stephen Wilson, Hopf rings in the bar spectral sequence, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 124, 507–511. MR 596982, DOI 10.1093/qmath/31.4.507
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, DOI 10.1007/BFb0074449
- C. Weibel, Robert W. Thomason (1952–1995), Notices of the AMS 43 (1996), 860–862.
- D. Yao, Higher algebraic $K$-theory of admissible abelian categories and localization theorems, Ph.D. thesis, Johns Hopkins University, Baltimore, 1990.
Additional Information
- Charles A. Weibel
- Affiliation: Mathematics Department, Rutgers University, New Brunswick, NJ 08903
- MR Author ID: 181325
- Email: weibel@math.rutgers.edu
- Received by editor(s): May 30, 1996
- Additional Notes: Paper presented March 3, 1996, at The Fields Institute, Toronto
Author partially supported by NSF grant DMS95-00791. - © Copyright 1997 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 34 (1997), 1-13
- MSC (1991): Primary 19-02; Secondary 18-02, 55-02
- DOI: https://doi.org/10.1090/S0273-0979-97-00707-6
- MathSciNet review: 1401423