Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Wolmer V. Vasconcelos
Title: Arithmetic of blowup algebras
Additional book information: London Math. Soc. Lecture Note Ser., vol. 195 Cambridge Univ. Press, Cambridge, 1994, 329 pp., ISBN 0-521-45484-0, $34.95$

References [Enhancements On Off] (What's this?)

  • Shiro Goto, Koji Nishida, and Keiichi Watanabe, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik’s question, Proc. Amer. Math. Soc. 120 (1994), no. 2, 383–392. MR 1163334, DOI 10.1090/S0002-9939-1994-1163334-9
  • J. Herzog, A. Simis, and W. V. Vasconcelos, Koszul homology and blowing-up rings, Commutative algebra (Trento, 1981) Lecture Notes in Pure and Appl. Math., vol. 84, Dekker, New York, 1983, pp. 79–169. MR 686942
  • J. Herzog, A. Simis, and W. V. Vasconcelos, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc. 283 (1984), no. 2, 661–683. MR 737891, DOI 10.1090/S0002-9947-1984-0737891-6
  • Sam Huckaba and Craig Huneke, Powers of ideals having small analytic deviation, Amer. J. Math. 114 (1992), no. 2, 367–403. MR 1156570, DOI 10.2307/2374708
  • Sam Huckaba and Craig Huneke, Rees algebras of ideals having small analytic deviation, Trans. Amer. Math. Soc. 339 (1993), no. 1, 373–402. MR 1123455, DOI 10.1090/S0002-9947-1993-1123455-7
  • Craig Huneke, The theory of $d$-sequences and powers of ideals, Adv. in Math. 46 (1982), no. 3, 249–279. MR 683201, DOI 10.1016/0001-8708(82)90045-7
  • Craig Huneke, On the symmetric and Rees algebra of an ideal generated by a $d$-sequence, J. Algebra 62 (1980), no. 2, 268–275. MR 563225, DOI 10.1016/0021-8693(80)90179-9
  • Joseph Lipman, Cohen-Macaulayness in graded algebras, Math. Res. Lett. 1 (1994), no. 2, 149–157. MR 1266753, DOI 10.4310/MRL.1994.v1.n2.a2
  • Artibano Micali, Sur les algèbres universelles, Ann. Inst. Fourier (Grenoble) 14 (1964), no. fasc. 2, 33–87 (French). MR 177009
  • Masayoshi Nagata, On the fourteenth problem of Hilbert, Proc. Internat. Congress Math. 1958., Cambridge Univ. Press, New York, 1960, pp. 459–462. MR 0116056
  • Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
  • D. Rees, On a problem of Zariski, Illinois J. Math. 2 (1958), 145–149. MR 95843
  • Paul Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert’s fourteenth problem, J. Algebra 132 (1990), no. 2, 461–473. MR 1061491, DOI 10.1016/0021-8693(90)90141-A

  • Review Information:

    Reviewer: Bernd Ulrich
    Affiliation: Michigan State University
    Email: ulrich@math.msu.edu
    Journal: Bull. Amer. Math. Soc. 34 (1997), 177-181
    DOI: https://doi.org/10.1090/S0273-0979-97-00701-5
    Review copyright: © Copyright 1997 American Mathematical Society