Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
Full text of review:
PDF
This review is available free of charge.
Book Information:
Authors:
Luis A. Caffarelli and
Xavier Cabré
Title:
Fully nonlinear elliptic equations
Additional book information:
Amer. Math. Soc. Colloq. Publ., vol. 43, Amer. Math. Soc.,
Providence, RI,
1995,
vi + 104 pp.,
ISBN 0-8218-0437-5,
$39.00$
Luis A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), no. 1, 189–213. MR 1005611, DOI 10.2307/1971480
Luis Caffarelli, Elliptic second order equations, Rend. Sem. Mat. Fis. Milano 58 (1988), 253–284 (1990). MR 1069735, DOI 10.1007/BF02925245
Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
Lawrence C. Evans, A convergence theorem for solutions of nonlinear second-order elliptic equations, Indiana Univ. Math. J. 27 (1978), no. 5, 875–887. MR 503721, DOI 10.1512/iumj.1978.27.27059
Lawrence C. Evans, On solving certain nonlinear partial differential equations by accretive operator methods, Israel J. Math. 36 (1980), no. 3-4, 225–247. MR 597451, DOI 10.1007/BF02762047
Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333–363. MR 649348, DOI 10.1002/cpa.3160350303
Lawrence C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Trans. Amer. Math. Soc. 275 (1983), no. 1, 245–255. MR 678347, DOI 10.1090/S0002-9947-1983-0678347-8
David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
Hitoshi Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math. 42 (1989), no. 1, 15–45. MR 973743, DOI 10.1002/cpa.3160420103
Hitoshi Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), no. 2, 369–384. MR 894587, DOI 10.1215/S0012-7094-87-05521-9
Robert Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101 (1988), no. 1, 1–27. MR 920674, DOI 10.1007/BF00281780
N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 3, 487–523, 670 (Russian). MR 661144
N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 75–108 (Russian). MR 688919
N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series), vol. 7, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ]. MR 901759, DOI 10.1007/978-94-010-9557-0
N. V. Krylov and M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR 245 (1979), no. 1, 18–20 (Russian). MR 525227
N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161–175, 239 (Russian). MR 563790
P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming principle and applications, Comm. Partial Differential Equations 8 (1983), no. 10, 1101–1174. MR 709164, DOI 10.1080/03605308308820297
- 1.
- L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. 130 (1989), 189-213. MR 1005611
- 2.
- -, Elliptic second order equations, Rend. Sem. Mat. Fis. Milano 58 (1988), 253-284. MR 1069735
- 3.
- M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42. MR 0690039
- 4.
- L. C. Evans, A convergence theorem for solutions of nonlinear second-order elliptic equations, Indiana Univ. Math. J. 27 (1978), 875-887. MR 0503721
- 5.
- -, On solving certain nonlinear partial differential equations by accretive operator methods, Israel J. Math. 36 (1980), 225-247. MR 0597451
- 6.
- -, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), 333-363. MR 0649348
- 7.
- -, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Trans. Amer. Math. Soc. 275 (1983), 245-255. MR 0678347
- 8.
- D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second ed., Springer-Verlag, Berlin and Heidelberg, 1983. MR 0737190
- 9.
- H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second order PDE's, Comm. Pure Appl. Math. 42 (1989), 15-46. MR 0973743
- 10.
- -, Perron's method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), 369-384. MR 0894587
- 11.
- R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second oder partial differential equations, Arch. Rational Mech. Anal. 101 (1988), 1-27. MR 0920674
- 12.
- N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 487-523 (Russian); English transl., Math. USSR-Izv. 20 (1983), 459-492. MR 0661144
- 13.
- -, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 75-108 (Russian); English transl., Math. USSR-Izv. 24 (1984), 67-97. MR 0688919
- 14.
- -, Nonlinear elliptic and parabolic equations of the second order, Reidel, Dordrecht, 1987. MR 0901759
- 15.
- N. V. Krylov and M. V. Safonov, An estimate of the probability that a diffusion process hits a set of positive measure, Dokl. Akad. Nauk SSSR 245 (1979), 18-20 (Russian); English transl., Soviet Math. Dokl. 20 (1979), 253-255. MR 0525227
- 16.
- -, A certain property of solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1980), 161-175 (Russian); English transl., Math. USSR-Izv. 16 (1981), 151-164. MR 0563790
- 17.
- P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi equations, Part II: Viscosity solutions and uniqueness, Comm. Partial Differential Equations 8 (1983), 1229-1276. MR 0709164
Review Information:
Reviewer:
John Urbas
Affiliation:
University of Bonn
Email:
urbas@math.uni-bonn.de
Journal:
Bull. Amer. Math. Soc.
34 (1997), 187-191
DOI:
https://doi.org/10.1090/S0273-0979-97-00704-0
Review copyright:
© Copyright 1997
American Mathematical Society