Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Luis A. Caffarelli and Xavier Cabré
Title: Fully nonlinear elliptic equations
Additional book information: Amer. Math. Soc. Colloq. Publ., vol. 43, Amer. Math. Soc., Providence, RI, 1995, vi + 104 pp., ISBN 0-8218-0437-5, $39.00$

References [Enhancements On Off] (What's this?)

  • Luis A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), no. 1, 189–213. MR 1005611, DOI 10.2307/1971480
  • Luis Caffarelli, Elliptic second order equations, Rend. Sem. Mat. Fis. Milano 58 (1988), 253–284 (1990). MR 1069735, DOI 10.1007/BF02925245
  • Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
  • Lawrence C. Evans, A convergence theorem for solutions of nonlinear second-order elliptic equations, Indiana Univ. Math. J. 27 (1978), no. 5, 875–887. MR 503721, DOI 10.1512/iumj.1978.27.27059
  • Lawrence C. Evans, On solving certain nonlinear partial differential equations by accretive operator methods, Israel J. Math. 36 (1980), no. 3-4, 225–247. MR 597451, DOI 10.1007/BF02762047
  • Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333–363. MR 649348, DOI 10.1002/cpa.3160350303
  • Lawrence C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Trans. Amer. Math. Soc. 275 (1983), no. 1, 245–255. MR 678347, DOI 10.1090/S0002-9947-1983-0678347-8
  • David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
  • Hitoshi Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math. 42 (1989), no. 1, 15–45. MR 973743, DOI 10.1002/cpa.3160420103
  • Hitoshi Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), no. 2, 369–384. MR 894587, DOI 10.1215/S0012-7094-87-05521-9
  • Robert Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101 (1988), no. 1, 1–27. MR 920674, DOI 10.1007/BF00281780
  • N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 3, 487–523, 670 (Russian). MR 661144
  • N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 75–108 (Russian). MR 688919
  • N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series), vol. 7, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ]. MR 901759, DOI 10.1007/978-94-010-9557-0
  • N. V. Krylov and M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR 245 (1979), no. 1, 18–20 (Russian). MR 525227
  • N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161–175, 239 (Russian). MR 563790
  • P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming principle and applications, Comm. Partial Differential Equations 8 (1983), no. 10, 1101–1174. MR 709164, DOI 10.1080/03605308308820297

  • Review Information:

    Reviewer: John Urbas
    Affiliation: University of Bonn
    Email: urbas@math.uni-bonn.de
    Journal: Bull. Amer. Math. Soc. 34 (1997), 187-191
    DOI: https://doi.org/10.1090/S0273-0979-97-00704-0
    Review copyright: © Copyright 1997 American Mathematical Society