Algebraic structure of genetic inheritance
HTML articles powered by AMS MathViewer
- by Mary Lynn Reed PDF
- Bull. Amer. Math. Soc. 34 (1997), 107-130 Request permission
Abstract:
In this paper we will explore the nonassociative algebraic structure that naturally occurs as genetic information gets passed down through the generations. While modern understanding of genetic inheritance initiated with the theories of Charles Darwin, it was the Augustinian monk Gregor Mendel who began to uncover the mathematical nature of the subject. In fact, the symbolism Mendel used to describe his first results (e.g., see his 1866 paper Experiments in Plant-Hybridization) is quite algebraically suggestive. Seventy four years later, I.M.H. Etherington introduced the formal language of abstract algebra to the study of genetics in his series of seminal papers [Genetic algebras. Proc. Roy. Soc. Edinburgh, 59:242–258, 1939], [Duplication of linear algebras. Proc. Edinburgh Math. Soc. (2), 6:222–230, 1941.], [Non-associative algebra and the symbolism of genetics. Proc. Roy. Soc. Edinburgh, 61:24–42, 1941.]. In this paper we will discuss the concepts of genetics that suggest the underlying algebraic structure of inheritance, and we will give a brief overview of the algebras which arise in genetics and some of their basic properties and relationships. With the popularity of biologically motivated mathematics continuing to rise, we offer this survey article as another example of the breadth of mathematics that has biological significance. The most comprehensive reference for the mathematical research done in this area (through 1980) is Wörz-Busekros [Algebras in Genetics. Lecture Notes in Biomathematics, vol. 36, Springer-Verlag, New York, 1980].References
- Victor M. Abraham, Linearizing quadratic transformations in genetic algebras, Proc. London Math. Soc. (3) 40 (1980), no. 2, 346–363. MR 566495, DOI 10.1112/plms/s3-40.2.346
- S. Bernstein. Demonstration mathématique de la loi d’hérédité de Mendel. Comptes Rendus Acad. Sci. Paris, 177:528–531, 1923.
- —. Principe de stationarité et généralisation de la loi de Mendel. Comptes Rendus Acad. Sci. Paris, 177:581–584, 1923.
- —. Solution of a mathematical problem connected with the theory of heredity. Ann. Sci. de l’Ukraine, 1:83–114, 1924. (Russian).
- César Burgueño, Michael Neuburg, and Avelino Suazo, Totally orthogonal Bernstein algebras, Arch. Math. (Basel) 56 (1991), no. 4, 349–351. MR 1094421, DOI 10.1007/BF01198220
- Teresa Cortés, Modular Bernstein algebras, J. Algebra 163 (1994), no. 1, 191–206. MR 1257313, DOI 10.1006/jabr.1994.1012
- Roberto Costa and Henrique Guzzo Jr., Indecomposable baric algebras, Linear Algebra Appl. 183 (1993), 223–236. MR 1208207, DOI 10.1016/0024-3795(93)90434-P
- Roberto Costa and Henrique Guzzo Jr., Indecomposable baric algebras. II, Linear Algebra Appl. 196 (1994), 233–242. MR 1273986, DOI 10.1016/0024-3795(94)90326-3
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- H. Gonshor, Special train algebras arising in genetics, Proc. Edinburgh Math. Soc. (2) 12 (1960/61), 41–53. MR 124367, DOI 10.1017/S0013091500025037
- Harry Gonshor, Special train algebras arising in genetics. II, Proc. Edinburgh Math. Soc. (2) 14 (1964/65), 333–338. MR 194215, DOI 10.1017/S0013091500009020
- H. Gonshor, Contributions to genetic algebras, Proc. Edinburgh Math. Soc. (2) 17 (1970/71), 289–298. MR 302218, DOI 10.1017/S0013091500009548
- Harry Gonshor, Contributions to genetic algebras. II, Proc. Edinburgh Math. Soc. (2) 18 (1972/73), 273–279. MR 325173, DOI 10.1017/S001309150001004X
- S. González and C. Martínez, Idempotent elements in a Bernstein algebra, J. London Math. Soc. (2) 42 (1990), no. 3, 430–436. MR 1087218, DOI 10.1112/jlms/s2-42.3.430
- S. González, C. Martínez, and P. Vicente, Idempotent elements in a 2nd-order Bernstein algebra, Comm. Algebra 22 (1994), no. 2, 595–609. MR 1255883, DOI 10.1080/00927879408824865
- Henrique Guzzo Jr., Embedding nil algebras in train algebras, Proc. Edinburgh Math. Soc. (2) 37 (1994), no. 3, 463–470. MR 1297315, DOI 10.1017/S0013091500018915
- Henrique Guzzo Jr., The Peirce decomposition for commutative train algebras, Comm. Algebra 22 (1994), no. 14, 5745–5757. MR 1298748, DOI 10.1080/00927879408825160
- J.B.S. Haldane. Theoretical genetics of auto-polyploids. J. Genetics, 22:359–372, 1930.
- Irvin Roy Hentzel, Luiz Antonio Peresi, and Philip Holgate, On $k$th-order Bernstein algebras and stability at the $k+1$ generation in polyploids, IMA J. Math. Appl. Med. Biol. 7 (1990), no. 1, 33–40. MR 1069427
- P. Holgate, Sequences of powers in genetic algebras, J. London Math. Soc. 42 (1967), 489–496. MR 218413, DOI 10.1112/jlms/s1-42.1.489
- P. Holgate, Genetic algebras associated with sex linkage, Proc. Edinburgh Math. Soc. (2) 17 (1970/71), 113–120. MR 307738, DOI 10.1017/S0013091500009378
- P. Holgate, Characterisations of genetic algebras, J. London Math. Soc. (2) 6 (1972), 169–174. MR 314930, DOI 10.1112/jlms/s2-6.1.169
- P. Holgate, Genetic algebras satisfying Bernstein’s stationarity principle, J. London Math. Soc. (2) 9 (1974/75), 612–623. MR 465270, DOI 10.1112/jlms/s2-9.4.613
- P. Holgate, Selfing in genetic algebras, J. Math. Biol. 6 (1978), no. 2, 197–206. MR 647287, DOI 10.1007/BF02450789
- Ju. I. Ljubič, Fundamental concepts and theorems of the evolutional genetics of free populations, Uspehi Mat. Nauk 26 (1971), no. 5(161), 51–116 (Russian). MR 0446581
- Consuelo Martínez, Isomorphisms of Bernstein algebras, J. Algebra 160 (1993), no. 2, 419–423. MR 1244920, DOI 10.1006/jabr.1993.1193
- D. McHale and G. A. Ringwood, Haldane linearisation of baric algebras, J. London Math. Soc. (2) 28 (1983), no. 1, 17–26. MR 703460, DOI 10.1112/jlms/s2-28.1.17
- G. Mendel. Experiments in Plant-Hybridization. In James A. Peters, editor, Classic Papers in Genetics, pages 1–20. Prentice-Hall, Inc., 1959.
- Luiz A. Peresi, On baric algebras with prescribed automorphisms, Linear Algebra Appl. 78 (1986), 163–185. MR 840174, DOI 10.1016/0024-3795(86)90022-4
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Sebastian Walcher, On Bernstein algebras which are train algebras, Proc. Edinburgh Math. Soc. (2) 35 (1992), no. 1, 159–166. MR 1150961, DOI 10.1017/S0013091500005411
- Angelika Wörz-Busekros, The zygotic algebra for sex linkage, J. Math. Biol. 1 (1974), no. 1, 37–46. MR 371977, DOI 10.1007/bf02339487
- Angelika Wörz-Busekros, The zygotic algebra for sex linkage. II, J. Math. Biol. 2 (1975), no. 4, 359–371. MR 409587, DOI 10.1007/bf00817393
- Angelika Wörz-Busekros, Algebras in genetics, Lecture Notes in Biomathematics, vol. 36, Springer-Verlag, Berlin-New York, 1980. MR 599179
- Angelika Wörz-Busekros, Bernstein algebras, Arch. Math. (Basel) 48 (1987), no. 5, 388–398. MR 888867, DOI 10.1007/BF01189631
Additional Information
- Mary Lynn Reed
- Affiliation: Department of Mathematics, Philadelphia College of Pharmacy and Science, Philadelphia, Pennsylvania 19104
- Address at time of publication: National Security Agency, Ft. George G. Meade, Maryland 20755
- Email: mlreedphd@aol.com
- Received by editor(s): August 1, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 34 (1997), 107-130
- MSC (1991): Primary 17D92; Secondary 92-02
- DOI: https://doi.org/10.1090/S0273-0979-97-00712-X
- MathSciNet review: 1414973