Voevodsky's proof of Milnor's conjecture
Author:
F. Morel
Journal:
Bull. Amer. Math. Soc. 35 (1998), 123-143
MSC (1991):
Primary 12G05, 14C25, 55P42, 55S10, 57R20
DOI:
https://doi.org/10.1090/S0273-0979-98-00745-9
MathSciNet review:
1600334
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We give an overview of Voevodsky's recent proof of Milnor's conjecture on the
Galois cohomology of fields of characteristic
.
- 1. J. F. Adams. Stable Homotopy and Generalised Homology, University of Chicago Press, Chicago, 1974. MR 53:6534
- 2. H. Bass and J. Tate. The Milnor ring of a global field, Lect. Notes in Math. 342, Springer, 1973, 349-446. MR 56:449
- 3. A. Beilinson. Height pairing between algebraic cycles, in K-Theory, Arithmetic and geometry, Lect. Notes in Math. 1289, Springer (1987) 1-26. MR 89h:11027
- 4. S. Bloch. Lectures on algebraic cycles, Duke Univ. Lectures Series, 1980. MR 82e:14012
- 5. S. Bloch. Algebraic cycles and higher K-theory, Adv. in Math 61 No 3 (1986), 267-304. MR 88f:18010
- 6. S. Bloch. The moving lemma for the higher Chow groups, Alg. Geom. 3 (1994), 537-568. MR 96c:14001
- 7. S. Bloch and S. Lichtenbaum. A spectral sequence for motivic cohomology, preprint.
- 8. A. Dold and R. Thom. Quasifaserungen und unendliche symmetrische Produkte, Annals of Math. 67 (1958), 239-281. MR 20:3542
- 9. R. Elman, T. Y. Lam, Pfister forms and K-theory of fields, J. Algebra 23 (1972), 181-213. MR 46:1882
- 10. E.M. Friedlander, Motivic Complexes of Suslin and Voevodsky, Séminaire Bourbaki, Exposé 833 Juin 1997.
- 11. E.M. Friedlander and V. Voevodsky, Bivariant cycle cohomology, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
- 12. A. Grothendieck. La théorie des classes de Chern, Bull. Soc. Math. de France, 86 (1958), 137-154. MR 22:6818
- 13. B. Kahn. La conjecture de Milnor, d'après V. Voevodsky, Séminaire Bourbaki, Exposé 834 Juin 1997.
- 14. K. Kato. A generalization of local class field theory by using K-groups, II, J. Fac. Sci. Univ. Tokyo 1A 27 (1980), 603-683. MR 83g:12020a
- 15. M. Knebusch, Generic splitting of quadratic forms, I, Proc. London Math. Soc. 33 (1976),65-93. MR 54:230
- 16. M. Levine. Bloch's higher Chow groups revisited, in K-theory, Strasbourg, 1992, Asterisque 226 (1994), 235-320. MR 96c:14008
- 17. M. Levine. Homology of algebraic varieties : an introduction to recent results of Suslin and Voevodsky, Bull. A.M.S. (N.S.) 34 (1997), 293-312. MR 97m:14025
- 18. S. Lichtenbaum. Values of Zeta-functions at non-negative integers, In Number theory, Lect. Notes in Math. 1068, Springer-Verlag (1984), 127-138. MR 756:089
- 19. A. Merkurjev. On the norm residue symbol of degree 2 (in Russian), Dokl. Akad. Nauk SSSR 261 (1981), 542-547. English translation: Soviet Math. Dokl. 24 (1981), 546-551.
- 20.
A. Merkurjev and A.A. Suslin. K-cohomology of Severi-Brauer varietes and the norm residue homomorphism (in Russian), Izv. Akad. Nauk SSSR 46 (1982), 1011-1046. English transla-
tion: Math. USSR Izv. 21 (1983), 307-340. - 21. A. Merkurjev and A.A. Suslin. On the norm residue homomorphism of degree three (in Russian), Izv. Akad. Nauk SSSR 54 (1990), 339-356. English translation : Math. USSR Izv. 36 (1991), 349-368.
- 22. J. S. Milne. Etale Cohomology, Princeton Math. Series 33, Princeton University Press (1980). MR 81j:14002
- 23. J. Milnor. The Steenrod algebra and its dual. Annals of Math., 67(1), (1958) 150-171. MR 20:6092
- 24. J. Milnor. Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318-344. MR 41:5465
- 25. J. Milnor and J. Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton University Press (1974). MR 55:13428
- 26.
F. Morel and V. Voevodsky.
-homotopy theory of schemes, in preparation.
- 27. Y. Nisnevich. The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. In Algebraic K-theory: connections with geometry and topology, pages 241-342. Kluwer Acad. Publ., Dordrecht, 1989. MR 91c:19004
- 28. D. Orlov, A. Vishik and V. Voevodsky, Motivic cohomology of Pfister quadrics, in preparation.
- 29.
M. Rost. Hilbert's theorem 90 for
for degree-two extensions, preprint, 1986.
- 30.
M. Rost. On the spinornorm and
for quadrics, preprint 1988.
- 31. M. Rost. Some new results on the Chow groups of quadrics, preprint 1990.
- 32. W. Scharlau. Quadratic and Hermitian forms, Grundlehren der Math. Wissenschaften 270, Springer-Verlag (1985). MR 86k:11022
- 33. J.-P. Serre. Groupes algébriques et corps de classes, Hermann, Paris (1959). MR 21:1973
- 34. J.-P. Serre. Corps locaux, Act. Sci. Ind. no 1296, Paris (1962). MR 27:133
- 35. J.-P. Serre. Cohomologie galoisienne, Lect. Notes in Math. 5 (nouvelle édition), Springer, 1994. MR 96b:12010
- 36. J.-P. Serre. Algèbre locale, multiplicités, Lect. Notes in Math. 11(troisème édition), Springer, 1975. MR 34:1352
- 37. N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Annals of Math. Studies 50, Princeton University Press (1962). MR 26:3056
- 38. A. Suslin. The quaternion homomorphism for the field of functions on a conic, Dokl. Akad. Nauk SSSR 265 (1982), 292-296 ; English translation in Soviet. Math. Dokl. 26 (1982), 72-77. MR 84a:12030
- 39. A. Suslin. Higher Chow groups and étale cohomology. In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
- 40. A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients. In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
- 41. A. Suslin and V. Voevodsky, Singular homology of abstract algebraic varieties, Inventionnes Math. 123 Fasc. 1(1996), 61-94. MR 97e:14030
- 42. A. Suslin and V. Voevodsky, Relative cycles and Chow sheaves, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
- 43. V. Voevodsky. The Milnor conjecture, preprint 1996.
- 44. V. Voevodsky. Cohomological theory of presheaves with transfers, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
- 45. V. Voevodsky. Triangulated categories of motives over a field, In Cycles, transfers and motivic homology theories, Ann. of Math. Studies, Princeton University Press, to appear.
- 46.
V. Voevodsky. Bloch-Kato conjecture for
-coefficients and algebraic Morava K-theories, (1995) preprint.
- 47. V. Voevodsky. Cohomological operations in motivic cohomology, in preparation
- 48. M. Artin, A. Grothendieck et J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Springer-Verlag, Berlin, Heidelberg, New-York, (1972-73). MR 50:7130; MR 50:7131; MR 50:7132
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 12G05, 14C25, 55P42, 55S10, 57R20
Retrieve articles in all journals with MSC (1991): 12G05, 14C25, 55P42, 55S10, 57R20
Additional Information
F. Morel
Affiliation:
U.R.A. 169 du C.N.R.S., École Polytechnique, France
Email:
morel@math.polytechnique.fr
DOI:
https://doi.org/10.1090/S0273-0979-98-00745-9
Keywords:
Galois cohomology,
algebraic cycles,
motives,
stable homotopy theory
Received by editor(s):
October 7, 1997
Received by editor(s) in revised form:
January 25, 1998
Article copyright:
© Copyright 1998
American Mathematical Society


