Geometry of Riemann surfaces based on closed geodesics
Author:
Paul Schmutz Schaller
Journal:
Bull. Amer. Math. Soc. 35 (1998), 193-214
MSC (1991):
Primary 30F45, 53C22, 57M50, 11F06, 11H99; Secondary 32G15, 11F72
DOI:
https://doi.org/10.1090/S0273-0979-98-00750-2
MathSciNet review:
1609636
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The paper presents a survey on recent results on the geometry of Riemann surfaces showing that the study of closed geodesics provides a link between different aspects of Riemann surface theory such as hyperbolic geometry, topology, spectral theory, and the theory of arithmetic Fuchsian groups. Of particular interest are the systoles, the shortest closed geodesics of a surface; their study leads to the hyperbolic geometry of numbers with close analogues to classical sphere packing problems.
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044
- C. Adams. Maximal cusps, collars and systoles in hyperbolic surfaces. To appear in Indiana Univ. Math. J.
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0357743
- Avner Ash, On eutactic forms, Canadian J. Math. 29 (1977), no. 5, 1040–1054. MR 491523, DOI https://doi.org/10.4153/CJM-1977-101-2
- Avner Ash, On the existence of eutactic forms, Bull. London Math. Soc. 12 (1980), no. 3, 192–196. MR 572099, DOI https://doi.org/10.1112/blms/12.3.192
- Christophe Bavard, Systole et invariant d’Hermite, J. Reine Angew. Math. 482 (1997), 93–120 (French). MR 1427658, DOI https://doi.org/10.1515/crll.1997.482.93
- Anne-Marie Bergé and Jacques Martinet, Sur la classification des réseaux eutactiques, J. London Math. Soc. (2) 53 (1996), no. 3, 417–432 (French). MR 1396707, DOI https://doi.org/10.1112/jlms/53.3.417
- Joan S. Birman and Caroline Series, Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24 (1985), no. 2, 217–225. MR 793185, DOI https://doi.org/10.1016/0040-9383%2885%2990056-4
- Béla Bollobás, Extremal graph theory, London Mathematical Society Monographs, vol. 11, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 506522
- Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139–162. MR 931208, DOI https://doi.org/10.1007/BF01393996
- Francis Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no. 2, 233–297 (English, with English and French summaries). MR 1413855
- A. Borel, Commensurability classes and volumes of hyperbolic $3$-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1–33. MR 616899
- B. H. Bowditch, A proof of McShane’s identity via Markoff triples, Bull. London Math. Soc. 28 (1996), no. 1, 73–78. MR 1356829, DOI https://doi.org/10.1112/blms/28.1.73
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR 1324339
- Peter Buser, Riemannsche Flächen mit Eigenwerten in $(0,$ $1/4)$, Comment. Math. Helv. 52 (1977), no. 1, 25–34. MR 434961, DOI https://doi.org/10.1007/BF02567355
- Peter Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1183224
- R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3–92. MR 903850
- J. W. S. Cassels, An introduction to the geometry of numbers, Springer-Verlag, Berlin-New York, 1971. Second printing, corrected; Die Grundlehren der mathematischen Wissenschaften, Band 99. MR 0306130
- Andrew J. Casson and Steven A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988. MR 964685
- J. H. H. Chalk, Algebraic lattices, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 97–110. MR 731107
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- H. Cohn. Approach to Markoff’s minimal forms through modular functions. Annals Math. 61 (1955), 1-12.
- J.H. Conway; N.J.A.Sloane. Lattices with few distances. J. Number theory 39 (1991), 75-90.
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1993. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1194619
- Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, Mathematical Surveys and Monographs, vol. 30, American Mathematical Society, Providence, RI, 1989. MR 1010419
- Max Dehn, Papers on group theory and topology, Springer-Verlag, New York, 1987. Translated from the German and with introductions and an appendix by John Stillwell; With an appendix by Otto Schreier. MR 881797
- J. Delsarte. Sur le gitter fuchsien. C.R. Acad. Sci. Paris Sér. I Math. 214 (1942), 147-149.
- Jozef Dodziuk, Thea Pignataro, Burton Randol, and Dennis Sullivan, Estimating small eigenvalues of Riemann surfaces, The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985) Contemp. Math., vol. 64, Amer. Math. Soc., Providence, RI, 1987, pp. 93–121. MR 881458, DOI https://doi.org/10.1090/conm/064/881458
- P. Erdös, P. M. Gruber, and J. Hammer, Lattice points, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 39, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1003606
- H. M. Farkas and I. Kra, Riemann surfaces, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765
- A. Fathi; F. Laudenbach; V. Poénaru. Travaux de Thurston sur les surfaces. Séminaire Orsay, Astérisque 66-67 (1979).
- L. Fejes Tóth. Kreisausfüllungen der hyperbolischen Ebene. Acta Math. Acad. Sci. Hungar 4 (1953), 103-110.
- W. Fenchel; J. Nielsen. Discontinuous groups of non-euclidean motions. Unpublished manuscript (1948).
- R. Fricke; F. Klein. Vorlesungen über die Theorie der elliptischen Modulfunktionen. Band 1,2. Teubner Leipzig (1890,1892).
- F. Fricker. Lehrbuch der Gitterpunktlehre. Birkhäuser (1982).
- D. Ginzburg; Z. Rudnick. Stable multiplicities in the length spectrum of Riemann surfaces. To appear in Israel J. Math.
- D.D. Gorskov. Geometry of Lobachevski in connection with certain questions in arithmetic. J. Soviet Math. 16 (1981), 780-820.
- P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR 893813
- Laurent Guillopé, Sur la distribution des longueurs des géodésiques fermées d’une surface compacte à bord totalement géodésique, Duke Math. J. 53 (1986), no. 3, 827–848 (French). MR 860674, DOI https://doi.org/10.1215/S0012-7094-86-05345-7
- John L. Harer, The cohomology of the moduli space of curves, Theory of moduli (Montecatini Terme, 1985) Lecture Notes in Math., vol. 1337, Springer, Berlin, 1988, pp. 138–221. MR 963064, DOI https://doi.org/10.1007/BFb0082808
- J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), no. 3, 457–485. MR 848681, DOI https://doi.org/10.1007/BF01390325
- Hugh M. Hilden, María Teresa Lozano, and José María Montesinos-Amilibia, A characterization of arithmetic subgroups of ${\rm SL}(2,{\bf R})$ and ${\rm SL}(2,{\bf C})$, Math. Nachr. 159 (1992), 245–270. MR 1237113, DOI https://doi.org/10.1002/mana.19921590117
- E. Hlawka, 90 Jahre Geometrie der Zahlen, Yearbook: surveys of mathematics 1980 (German), Bibliographisches Inst., Mannheim, 1980, pp. 9–41 (German). MR 620325
- H. Huber. Ueber eine neue Klasse automorpher Formen und ein Gitterproblem in der hyperbolischen Ebene I. Comment. Math. Helv. 30 (1955), 20-62.
- Heinz Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 (1959), 1–26 (German). MR 109212, DOI https://doi.org/10.1007/BF01369663
- Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481
- N. V. Ivanov, Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987), no. 3(255), 49–91, 255 (Russian). MR 896878
- Henryk Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349 (1984), 136–159. MR 743969, DOI https://doi.org/10.1515/crll.1984.349.136
- Henryk Iwaniec, Introduction to the spectral theory of automorphic forms, Biblioteca de la Revista Matemática Iberoamericana. [Library of the Revista Matemática Iberoamericana], Revista Matemática Iberoamericana, Madrid, 1995. MR 1325466
- F.W. Jenny. Ueber den ersten Eigenwert des Laplace-Operators auf einer Schar kompakter Riemannscher Flächen. Comment. Math. Helv. 59 (1984), 193-203.
- Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. MR 1177168
- Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235–265. MR 690845, DOI https://doi.org/10.2307/2007076
- Steven P. Kerckhoff, Lines of minima in Teichmüller space, Duke Math. J. 65 (1992), no. 2, 187–213. MR 1150583, DOI https://doi.org/10.1215/S0012-7094-92-06507-0
- Stefan Kühnlein, Partial solution of a conjecture of Schmutz, Arch. Math. (Basel) 67 (1996), no. 2, 164–172. MR 1399834, DOI https://doi.org/10.1007/BF01268932
- J. Lehner and M. Sheingorn, Simple closed geodesics on $H^{+}/\Gamma (3)$ arise from the Markov spectrum, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 2, 359–362. MR 752798, DOI https://doi.org/10.1090/S0273-0979-1984-15307-2
- Feng Luo, Geodesic length functions and Teichmüller spaces, Electron. Res. Announc. Amer. Math. Soc. 2 (1996), no. 1, 34–41. MR 1405967, DOI https://doi.org/10.1090/S1079-6762-96-00008-X
- W. Luo and P. Sarnak, Number variance for arithmetic hyperbolic surfaces, Comm. Math. Phys. 161 (1994), no. 2, 419–432. MR 1266491
- Wen Zhi Luo and Peter Sarnak, Quantum ergodicity of eigenfunctions on ${\rm PSL}_2(\mathbf Z)\backslash \mathbf H^2$, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 207–237. MR 1361757
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
- J. Marklof, On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds, Nonlinearity 9 (1996), no. 2, 517–536. MR 1384490, DOI https://doi.org/10.1088/0951-7715/9/2/014
- A. Markoff. Sur les formes binaires indéfinies. Math. Annalen 15 (1879), 381-406.
- G. McShane. A remarkable identity for lengths of curves. PhD Thesis, University of Warwick (1991).
- G. McShane. Simple geodesics and a series constant over Teichmüller space. To appear in Invent. math.
- Greg McShane and Igor Rivin, Simple curves on hyperbolic tori, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 12, 1523–1528 (English, with English and French summaries). MR 1340065
- Greg McShane and Igor Rivin, A norm on homology of surfaces and counting simple geodesics, Internat. Math. Res. Notices 2 (1995), 61–69. MR 1317643, DOI https://doi.org/10.1155/S1073792895000055
- H. Minkowski. Geometrie der Zahlen. Teubner 1896/1910; Chelsea (1953).
- Rick Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1995. MR 1326604
- Marston Morse, Topologically non-degenerate functions on a compact $n$-manifold $M$, J. Analyse Math. 7 (1959), 189–208. MR 113233, DOI https://doi.org/10.1007/BF02787685
- David Mumford, A remark on Mahler’s compactness theorem, Proc. Amer. Math. Soc. 28 (1971), 289–294. MR 276410, DOI https://doi.org/10.1090/S0002-9939-1971-0276410-4
- Jakob Nielsen, Jakob Nielsen: collected mathematical papers. Vol. 1, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1986. Edited and with a preface by Vagn Lundsgaard Hansen. MR 865335
- B. Osgood, R. Phillips, and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1988), no. 1, 148–211. MR 960228, DOI https://doi.org/10.1016/0022-1236%2888%2990070-5
- B. Osgood, R. Phillips, and P. Sarnak, Moduli space, heights and isospectral sets of plane domains, Ann. of Math. (2) 129 (1989), no. 2, 293–362. MR 986795, DOI https://doi.org/10.2307/1971449
- R. C. Penner, Perturbative series and the moduli space of Riemann surfaces, J. Differential Geom. 27 (1988), no. 1, 35–53. MR 918455
- R. C. Penner and J. L. Harer, Combinatorics of train tracks, Annals of Mathematics Studies, vol. 125, Princeton University Press, Princeton, NJ, 1992. MR 1144770
- Andrew D. Pollington and William Moran (eds.), Number theory with an emphasis on the Markoff spectrum, Lecture Notes in Pure and Applied Mathematics, vol. 147, Marcel Dekker, Inc., New York, 1993. MR 1219317
- J. R. Quine and Peter Sarnak (eds.), Extremal Riemann surfaces, Contemporary Mathematics, vol. 201, American Mathematical Society, Providence, RI, 1997. Papers from the AMS Special Session held at the Annual Meeting of the American Mathematical Society in San Francisco, CA, January 4–5, 1995. MR 1429188
- Burton Randol, The length spectrum of a Riemann surface is always of unbounded multiplicity, Proc. Amer. Math. Soc. 78 (1980), no. 3, 455–456. MR 553396, DOI https://doi.org/10.1090/S0002-9939-1980-0553396-1
- B. Riemann. Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. In Gesammelte Werke. Collected papers. Springer + Teubner, Leipzig (1990), 35-75.
- I. Rivin. Private communication.
- P. Sarnak. Prime geodesic theorems. Doctoral thesis, Stanford (1980).
- Peter Sarnak, Extremal geometries, Extremal Riemann surfaces (San Francisco, CA, 1995) Contemp. Math., vol. 201, Amer. Math. Soc., Providence, RI, 1997, pp. 1–7. MR 1429189, DOI https://doi.org/10.1090/conm/201/02616
- Paul Schmutz, Congruence subgroups and maximal Riemann surfaces, J. Geom. Anal. 4 (1994), no. 2, 207–218. MR 1277506, DOI https://doi.org/10.1007/BF02921547
- Paul Schmutz, Systoles on Riemann surfaces, Manuscripta Math. 85 (1994), no. 3-4, 429–447. MR 1305753, DOI https://doi.org/10.1007/BF02568209
- Paul Schmutz, Systoles on Riemann surfaces, Manuscripta Math. 85 (1994), no. 3-4, 429–447. MR 1305753, DOI https://doi.org/10.1007/BF02568209
- Paul Schmutz, New results concerning the number of small eigenvalues on Riemann surfaces, J. Reine Angew. Math. 471 (1996), 201–220. MR 1374923, DOI https://doi.org/10.1515/crll.1996.471.201
- Paul Schmutz, Arithmetic groups and the length spectrum of Riemann surfaces, Duke Math. J. 84 (1996), no. 1, 199–215. MR 1394753, DOI https://doi.org/10.1215/S0012-7094-96-08407-0
- P. Schmutz Schaller, The modular torus has maximal length spectrum, Geom. Funct. Anal. 6 (1996), no. 6, 1057–1073. MR 1421874, DOI https://doi.org/10.1007/BF02246996
- Paul Schmutz Schaller, Extremal Riemann surfaces with a large number of systoles, Extremal Riemann surfaces (San Francisco, CA, 1995) Contemp. Math., vol. 201, Amer. Math. Soc., Providence, RI, 1997, pp. 9–19. MR 1429190, DOI https://doi.org/10.1090/conm/201/02617
- P. Schmutz Schaller. Geometric characterization of hyperelliptic Riemann surfaces. Preprint (1996).
- P. Schmutz Schaller. Systole is a topological Morse function for Riemann surfaces. Preprint (1997).
- P. Schmutz Schaller. Teichmüller space and fundamental domains of Fuchsian groups. Preprint (1997).
- R. Schoen, S. Wolpert, and S. T. Yau, Geometric bounds on the low eigenvalues of a compact surface, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 279–285. MR 573440
- A. Selberg. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47-87.
- Mika Seppälä and Tuomas Sorvali, Geometry of Riemann surfaces and Teichmüller spaces, North-Holland Mathematics Studies, vol. 169, North-Holland Publishing Co., Amsterdam, 1992. MR 1202043
- C.L. Siegel. Ueber die Klassenzahl quadratischer Zahlkörper. Acta Arith. 1 (1935), 83-86.
- Carl Ludwig Siegel, Lectures on the geometry of numbers, Springer-Verlag, Berlin, 1989. Notes by B. Friedman; Rewritten by Komaravolu Chandrasekharan with the assistance of Rudolf Suter; With a preface by Chandrasekharan. MR 1020761
- Kisao Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975), no. 4, 600–612. MR 398991, DOI https://doi.org/10.2969/jmsj/02740600
- William P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 91–112. MR 903860
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI https://doi.org/10.1090/S0273-0979-1988-15685-6
- Anthony J. Tromba, Teichmüller theory in Riemannian geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. Lecture notes prepared by Jochen Denzler. MR 1164870
- M. Tsuji. Theorems in the geometry of numbers for Fuchsian groups. J. Math. Soc. Japan 4 (1952), 189-193.
- M. Tsuji. Analogue of Blichfeldt’s theorem for Fuchsian groups. Comment. Math. Univ. St. Paul 5 (1956), 7-24.
- A. B. Venkov, Spectral theory of automorphic functions, Trudy Mat. Inst. Steklov. 153 (1981), 172 (Russian). MR 665585
- G. Voronoï. Sur quelques propriétés des formes quadratiques positives parfaites. J. reine angew. Math. 133 (1908), 97-178.
- Michael Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), no. 2, 449–479. MR 982185
- Scott Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math. 107 (1985), no. 4, 969–997. MR 796909, DOI https://doi.org/10.2307/2374363
- Kazuo Azukawa, The invariant pseudometric related to negative plurisubharmonic functions, Kodai Math. J. 10 (1987), no. 1, 83–92. MR 879385, DOI https://doi.org/10.2996/kmj/1138037363
- M. M. Elin, Epimorphism of the convolution operator in convex domains in ${\bf C}^n$, Sibirsk. Mat. Zh. 27 (1986), no. 4, 201–203, 216 (Russian). MR 867872
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 30F45, 53C22, 57M50, 11F06, 11H99, 32G15, 11F72
Retrieve articles in all journals with MSC (1991): 30F45, 53C22, 57M50, 11F06, 11H99, 32G15, 11F72
Additional Information
Paul Schmutz Schaller
Email:
Paul.Schmutz@maths.unine.ch
Received by editor(s):
October 1, 1997
Received by editor(s) in revised form:
March 19, 1998
Additional Notes:
Partially supported by Schweizerischer Nationalfonds.
Article copyright:
© Copyright 1998
American Mathematical Society