Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: C. Moeglin and J.-L. Waldspurger
Title: Spectral decomposition and Eisenstein series
Additional book information: Cambridge Univ. Press, Cambridge, New York, and Melbourne, 1995, xxvii+ 335 pp., ISBN 0-521-41893-3, $80.00

References [Enhancements On Off] (What's this?)

  • 1. James G. Arthur, A trace formula for reductive groups. I. Terms associated to classes in 𝐺(𝑄), Duke Math. J. 45 (1978), no. 4, 911–952. MR 518111
  • 2. James Arthur, Eisenstein series and the trace formula, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 253–274. MR 546601
  • 3. James Arthur, Unipotent automorphic representations: global motivation, Automorphic forms, Shimura varieties, and 𝐿-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 1–75. MR 1044818
  • 4. E. P. van den Ban and H. Schlichtkrull, `A residue calculus for root systems', preprint, 1997.
  • 5. Yves Colin de Verdière, Une nouvelle démonstration du prolongement méromorphe des séries d’Eisenstein, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 7, 361–363 (French, with English summary). MR 639175
  • 6. Isaac Y. Efrat, The Selberg trace formula for 𝑃𝑆𝐿₂(𝑅)ⁿ, Mem. Amer. Math. Soc. 65 (1987), no. 359, iv+111. MR 874084, https://doi.org/10.1090/memo/0359
  • 7. Jens Franke, `Harmonic analysis in weighted $L^{2}$-spaces', Ann. Sci. École Norm. Sup. 31 (1998), 181-279. CMP 98:08
  • 8. R. Godement, The decomposition of 𝐿²(𝐺/Γ) for Γ=𝑆𝐿(2,𝑍), Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., Amer. Math. Soc., Providence, R.I., 1966, pp. 211–224. MR 0210827
  • 9. R. Godement, `Introduction á la théorie de Langlands', Sém. Bourbaki 321 (1967/68).
  • 10. G. Harder, Chevalley groups over function fields and automorphic forms, Ann. of Math. (2) 100 (1974), 249–306. MR 563090, https://doi.org/10.2307/1971073
  • 11. Harish-Chandra, Automorphic forms on semisimple Lie groups, Notes by J. G. M. Mars. Lecture Notes in Mathematics, No. 62, Springer-Verlag, Berlin-New York, 1968. MR 0232893
  • 12. Tomio Kubota, Elementary theory of Eisenstein series, Kodansha Ltd., Tokyo; Halsted Press [John Wiley & Sons], New York-London-Sydney, 1973. MR 0429749
  • 13. R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 235–252. MR 0249539
  • 14. Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 0579181
  • 15. H. Maass, `Über eine neue Art von nichtanalytischen automorphen Funktionedn und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen', Mat. Ann. 121 (1949), pp. 141-183. MR 11:163c
  • 16. C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de 𝐺𝐿(𝑛), Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 605–674 (French). MR 1026752
  • 17. L. E. Morris, Eisenstein series for reductive groups over global function fields. I. The cusp form case, Canadian J. Math. 34 (1982), no. 1, 91–168. MR 650855, https://doi.org/10.4153/CJM-1982-009-2
  • 18. L. E. Morris, Eisenstein series for reductive groups over global function fields. I. The cusp form case, Canadian J. Math. 34 (1982), no. 1, 91–168. MR 650855, https://doi.org/10.4153/CJM-1982-009-2
  • 19. Werner Müller, The trace class conjecture in the theory of automorphic forms, Ann. of Math. (2) 130 (1989), no. 3, 473–529. MR 1025165, https://doi.org/10.2307/1971453
  • 20. W. Müller, `On the analytic continuation of rank one Eisenstein series', Geom. Funct. Anal. 6 (1996), pp. 572-586. CMP 96:13
  • 21. M. S. Osborne and G. Warner, The theory of Eisenstein systems, Pure and Appl. Math. 99, Academic Press, 1981.
  • 22. M. Scott Osborne and Garth Warner, The Selberg trace formula. II. Partition, reduction, truncation, Pacific J. Math. 106 (1983), no. 2, 307–496. MR 699915
  • 23. W. Roelcke, `Analytische Fortsetzung der Eisensteinreihen zu den parabolischen Spitzen von Grenzkreisgruppen erster Art', Math. Ann. 132 (1956), pp. 121-129. MR 18:571b

Review Information:

Reviewer: Bill Casselman
Affiliation: University of British Columbia
Email: cass@math.ubc.ca
Journal: Bull. Amer. Math. Soc. 35 (1998), 243-247
MSC (1991): Primary 11F72
DOI: https://doi.org/10.1090/S0273-0979-98-00752-6
Review copyright: © Copyright 1998 American Mathematical Society