Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
Full text of review: PDF This review is available free of charge.
Book Information:
Author: Victor P. Snaith
Title: Galois module structure
Additional book information: Fields Institute Monographs, vol. 2, American Mathematical Society, Providence, RI, 1994, vii+207 pp., $70.00, ISBN 0-8218-0264-X
- Ph. Cassou-Noguès, T. Chinburg, A. Fröhlich, and M. J. Taylor, $L$-functions and Galois modules, $L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 75–139. Based on notes by D. Burns and N. P. Byott. MR 1110391, DOI https://doi.org/10.1017/CBO9780511526053.005 D. Burns, M. Flach, Motivic L-functions and Galois module structures, Math. Ann. 305 (1996), 65-102. CMP 96:11 D. Burns, M. Flach, On Galois structure invariants associated to Tate motives (to appear).
- T. Chinburg, On the Galois structure of algebraic integers and $S$-units, Invent. Math. 74 (1983), no. 3, 321–349. MR 724009, DOI https://doi.org/10.1007/BF01394240
- Ted Chinburg, Exact sequences and Galois module structure, Ann. of Math. (2) 121 (1985), no. 2, 351–376. MR 786352, DOI https://doi.org/10.2307/1971177
- Ted Chinburg, Manfred Kolster, Georgios Pappas, and Victor Snaith, Galois structure of $K$-groups of rings of integers, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 12, 1435–1440 (English, with English and French summaries). MR 1340048 T. Chinburg, M. Kolster, G. Pappas, V. Snaith, Galois structure of K-groups of rings on integers (to appear).
- Albrecht Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 1, Springer-Verlag, Berlin, 1983. MR 717033
- A. Fröhlich, Classgroups and Hermitian modules, Progress in Mathematics, vol. 48, Birkhäuser Boston, Inc., Boston, MA, 1984. MR 756236
- David Holland, Additive Galois module structure and Chinburg’s invariant, J. Reine Angew. Math. 425 (1992), 193–218. MR 1151319, DOI https://doi.org/10.1515/crll.1992.425.193
- Bruno Kahn, Descente galoisienne et $K_2$ des corps de nombres, $K$-Theory 7 (1993), no. 1, 55–100 (French, with English and French summaries). MR 1220427, DOI https://doi.org/10.1007/BF00962794
- Seyong Kim, A generalization of Fröhlich’s theorem to wildly ramified quaternion extensions of ${\bf Q}$, Illinois J. Math. 35 (1991), no. 1, 158–189. MR 1076672
- Seyong Kim, The root number class and Chinburg’s second invariant, J. Algebra 153 (1992), no. 1, 133–202. MR 1195410, DOI https://doi.org/10.1016/0021-8693%2892%2990152-C E. Nöether, Normalbasis bei Körpen ohne höhere Verzweigung, J. reine agnew. Math. 167 (1932), 147-152.
- Victor P. Snaith, Explicit Brauer induction, Cambridge Studies in Advanced Mathematics, vol. 40, Cambridge University Press, Cambridge, 1994. With applications to algebra and number theory. MR 1310780
- M. J. Taylor, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981), no. 1, 41–79. MR 608528, DOI https://doi.org/10.1007/BF01389193
Review Information:
Reviewer: A. Agboola
Affiliation: University of California, Santa Barbara
Email: agboola@math.ucsb.edu
Journal: Bull. Amer. Math. Soc. 35 (1998), 249-252
DOI: https://doi.org/10.1090/S0273-0979-98-00753-8
Review copyright: © Copyright 1998 American Mathematical Society