Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
Victor P. Snaith
Title:
Galois module structure
Additional book information:
Fields Institute Monographs, vol. 2, American Mathematical Society, Providence, RI, 1994, vii+207 pp., $70.00,
ISBN 0-8218-0264-X
Ph. Cassou-Noguès, T. Chinburg, A. Fröhlich, and M. J. Taylor, $L$-functions and Galois modules, $L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 75–139. Based on notes by D. Burns and N. P. Byott. MR 1110391, DOI 10.1017/CBO9780511526053.005
[BF1] D. Burns, M. Flach, Motivic L-functions and Galois module structures, Math. Ann. 305 (1996), 65-102. CMP 96:11
[BF2] D. Burns, M. Flach, On Galois structure invariants associated to Tate motives (to appear).
T. Chinburg, On the Galois structure of algebraic integers and $S$-units, Invent. Math. 74 (1983), no. 3, 321–349. MR 724009, DOI 10.1007/BF01394240
Ted Chinburg, Exact sequences and Galois module structure, Ann. of Math. (2) 121 (1985), no. 2, 351–376. MR 786352, DOI 10.2307/1971177
Ted Chinburg, Manfred Kolster, Georgios Pappas, and Victor Snaith, Galois structure of $K$-groups of rings of integers, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 12, 1435–1440 (English, with English and French summaries). MR 1340048
[CKPS2] T. Chinburg, M. Kolster, G. Pappas, V. Snaith, Galois structure of K-groups of rings on integers (to appear).
Albrecht Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 1, Springer-Verlag, Berlin, 1983. MR 717033, DOI 10.1007/978-3-642-68816-4
A. Fröhlich, Classgroups and Hermitian modules, Progress in Mathematics, vol. 48, Birkhäuser Boston, Inc., Boston, MA, 1984. MR 756236, DOI 10.1007/978-1-4684-6740-6
David Holland, Additive Galois module structure and Chinburg’s invariant, J. Reine Angew. Math. 425 (1992), 193–218. MR 1151319, DOI 10.1515/crll.1992.425.193
Bruno Kahn, Descente galoisienne et $K_2$ des corps de nombres, $K$-Theory 7 (1993), no. 1, 55–100 (French, with English and French summaries). MR 1220427, DOI 10.1007/BF00962794
Seyong Kim, A generalization of Fröhlich’s theorem to wildly ramified quaternion extensions of $\textbf {Q}$, Illinois J. Math. 35 (1991), no. 1, 158–189. MR 1076672
Seyong Kim, The root number class and Chinburg’s second invariant, J. Algebra 153 (1992), no. 1, 133–202. MR 1195410, DOI 10.1016/0021-8693(92)90152-C
[N] E. Nöether, Normalbasis bei Körpen ohne höhere Verzweigung, J. reine agnew. Math. 167 (1932), 147-152.
Victor P. Snaith, Explicit Brauer induction, Cambridge Studies in Advanced Mathematics, vol. 40, Cambridge University Press, Cambridge, 1994. With applications to algebra and number theory. MR 1310780, DOI 10.1017/CBO9780511600746
M. J. Taylor, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981), no. 1, 41–79. MR 608528, DOI 10.1007/BF01389193
- [BB]
- D. Burns, N. Byott, L-functions and Galois modules, in: L-functions and arithmetic (J. Coates, M. J. Taylor, eds.), Cambridge University Press, 1991, pp. 75-139. MR 1110391
- [BF1]
- D. Burns, M. Flach, Motivic L-functions and Galois module structures, Math. Ann. 305 (1996), 65-102. CMP 96:11
- [BF2]
- D. Burns, M. Flach, On Galois structure invariants associated to Tate motives (to appear).
- [C1]
- T. Chinburg, On the Galois structure of algebraic integers and
-units, Invent. Math. 74 (1983), 321-349. MR 0724009
- [C2]
- T. Chinburg, Exact sequences and Galois module structure, Ann. Math. vol 121 (1985), 351-376. MR 0786352
- [CKPS1]
- T. Chinburg, M. Kolster, G. Pappas, V. Snaith, Galois structure of K-groups of rings of integers, C. R. Acad. Sci. Paris 320 (1995), 1435-1440. MR 1340048
- [CKPS2]
- T. Chinburg, M. Kolster, G. Pappas, V. Snaith, Galois structure of K-groups of rings on integers (to appear).
- [F1]
- A. Fröhlich, Galois module structure of algebraic integers, Springer-Verlag, 1983. MR 0717033
- [F2]
- A. Fröhlich, Classgroups and Hermitian modules, Birkhäuser, 1984. MR 0756236
- [H]
- D. Holland, Additive Galois module structure and Chinburg's Invariant, J. reine agnew. Math. 425 (1992), 193-218. MR 1151319
- [K]
- B. Kahn, Descente Galoisienne et
des corps de nombres, K-theory 7 (1993), 55-100. MR 1220427
- [Ki1]
- S. Kim, A generalisation of Fröhlich's conjecture to wildly ramified quaternion extensions of
, Ill. J. Math. 35 (1991), 158-189. MR 1076672
- [Ki2]
- S. Kim, The root number class and Chinburg's second invariant, J. Alg. 153 (1992), 133-202. MR 1195410
- [N]
- E. Nöether, Normalbasis bei Körpen ohne höhere Verzweigung, J. reine agnew. Math. 167 (1932), 147-152.
- [Sn]
- V. P. Snaith, Explicit Brauer Induction, Cambridge University Press, 1994. MR 1310780
- [T]
- M. J. Tayor, On Fröhlich's conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981), 41-79. MR 0608528
Review Information:
Reviewer:
A. Agboola
Affiliation:
University of California, Santa Barbara
Email:
agboola@math.ucsb.edu
Journal:
Bull. Amer. Math. Soc.
35 (1998), 249-252
DOI:
https://doi.org/10.1090/S0273-0979-98-00753-8
Review copyright:
© Copyright 1998
American Mathematical Society