Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Victor P. Snaith
Title: Galois module structure
Additional book information: Fields Institute Monographs, vol. 2, American Mathematical Society, Providence, RI, 1994, vii+207 pp., $70.00, ISBN 0-8218-0264-X

References [Enhancements On Off] (What's this?)

  • Ph. Cassou-Noguès, T. Chinburg, A. Fröhlich, and M. J. Taylor, $L$-functions and Galois modules, $L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 75–139. Based on notes by D. Burns and N. P. Byott. MR 1110391, DOI 10.1017/CBO9780511526053.005
  • [BF1]
    D. Burns, M. Flach, Motivic L-functions and Galois module structures, Math. Ann. 305 (1996), 65-102. CMP 96:11
    D. Burns, M. Flach, On Galois structure invariants associated to Tate motives (to appear).
  • T. Chinburg, On the Galois structure of algebraic integers and $S$-units, Invent. Math. 74 (1983), no. 3, 321–349. MR 724009, DOI 10.1007/BF01394240
  • Ted Chinburg, Exact sequences and Galois module structure, Ann. of Math. (2) 121 (1985), no. 2, 351–376. MR 786352, DOI 10.2307/1971177
  • Ted Chinburg, Manfred Kolster, Georgios Pappas, and Victor Snaith, Galois structure of $K$-groups of rings of integers, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 12, 1435–1440 (English, with English and French summaries). MR 1340048
  • [CKPS2]
    T. Chinburg, M. Kolster, G. Pappas, V. Snaith, Galois structure of K-groups of rings on integers (to appear).
  • Albrecht Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 1, Springer-Verlag, Berlin, 1983. MR 717033, DOI 10.1007/978-3-642-68816-4
  • A. Fröhlich, Classgroups and Hermitian modules, Progress in Mathematics, vol. 48, Birkhäuser Boston, Inc., Boston, MA, 1984. MR 756236, DOI 10.1007/978-1-4684-6740-6
  • David Holland, Additive Galois module structure and Chinburg’s invariant, J. Reine Angew. Math. 425 (1992), 193–218. MR 1151319, DOI 10.1515/crll.1992.425.193
  • Bruno Kahn, Descente galoisienne et $K_2$ des corps de nombres, $K$-Theory 7 (1993), no. 1, 55–100 (French, with English and French summaries). MR 1220427, DOI 10.1007/BF00962794
  • Seyong Kim, A generalization of Fröhlich’s theorem to wildly ramified quaternion extensions of $\textbf {Q}$, Illinois J. Math. 35 (1991), no. 1, 158–189. MR 1076672
  • Seyong Kim, The root number class and Chinburg’s second invariant, J. Algebra 153 (1992), no. 1, 133–202. MR 1195410, DOI 10.1016/0021-8693(92)90152-C
  • [N]
    E. Nöether, Normalbasis bei Körpen ohne höhere Verzweigung, J. reine agnew. Math. 167 (1932), 147-152.
  • Victor P. Snaith, Explicit Brauer induction, Cambridge Studies in Advanced Mathematics, vol. 40, Cambridge University Press, Cambridge, 1994. With applications to algebra and number theory. MR 1310780, DOI 10.1017/CBO9780511600746
  • M. J. Taylor, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981), no. 1, 41–79. MR 608528, DOI 10.1007/BF01389193

  • Review Information:

    Reviewer: A. Agboola
    Affiliation: University of California, Santa Barbara
    Journal: Bull. Amer. Math. Soc. 35 (1998), 249-252
    Review copyright: © Copyright 1998 American Mathematical Society