Normal families: New perspectives
HTML articles powered by AMS MathViewer
- by Lawrence Zalcman PDF
- Bull. Amer. Math. Soc. 35 (1998), 215-230 Request permission
Abstract:
This paper surveys some surprising applications of a lemma characterizing normal families of meromorphic functions on plane domains. These include short and efficient proofs of generalizations of (i) the Picard Theorems, (ii) Gol’dberg’s Theorem (a meromorphic function on $\mathbb {C}$ which is the solution of a first-order algebraic differential equation has finite order), and (iii) the Fatou-Julia Theorem (the Julia set of a rational function of degree $d\ge 2$ is the closure of the repelling periodic points). We also discuss Bloch’s Principle and provide simple solutions to some problems of Hayman connected with this principle.References
- Gerardo Aladro and Steven G. Krantz, A criterion for normality in $\textbf {C}^n$, J. Math. Anal. Appl. 161 (1991), no. 1, 1–8. MR 1127544, DOI 10.1016/0022-247X(91)90356-5
- I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252–256. MR 226009, DOI 10.1007/BF01110294
- Detlef Bargmann, Simple proofs of some fundamental properties of the Julia set, preprint.
- G. Barsegian, Geometrical theory of meromorphic functions, manuscript.
- Walter Bergweiler, On a theorem of Gol’dberg concerning meromorphic solutions of algebraic differential equations, Complex Variables Theory Appl. (to appear).
- Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355–373. MR 1344897, DOI 10.4171/RMI/176
- Andreas Bolsch, Repulsive periodic points of meromorphic functions, Complex Variables Theory Appl. 31 (1996), no. 1, 75–79. MR 1423240, DOI 10.1080/17476939608814947
- Mario Bonk and Alexandre Eremenko, Schlicht regions for entire and meromorphic functions, preprint.
- Robert Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213–219. MR 470252, DOI 10.1090/S0002-9947-1978-0470252-3
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Huaihui Chen, Yosida functions and Picard values of integral functions and their derivatives, Bull. Austral. Math. Soc. 54 (1996), no. 3, 373–381. MR 1419600, DOI 10.1017/S0004972700021791
- Huai Hui Chen and Ming Liang Fang, The value distribution of $f^nf’$, Sci. China Ser. A 38 (1995), no. 7, 789–798. MR 1360682
- Huai Hui Chen and Yong Xing Gu, Improvement of Marty’s criterion and its application, Sci. China Ser. A 36 (1993), no. 6, 674–681. MR 1246312
- Huai Hui Chen and Xin Hou Hua, Normality criterion and singular directions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992) Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994, pp. 34–40. MR 1343494
- Chi Tai Chuang, Normal families of meromorphic functions, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1249270, DOI 10.1142/1904
- J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389–392. MR 214769, DOI 10.1112/jlms/s1-42.1.389
- J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117–148. MR 192055, DOI 10.1007/BF02564366
- David Drasin, Normal families and the Nevanlinna theory, Acta Math. 122 (1969), 231–263. MR 249592, DOI 10.1007/BF02392012
- Alexandre Eremenko, Bloch radius, normal families, and quasiregular mappings, preprint.
- —, Normal holomorphic curves from parabolic regions to projective spaces, preprint.
- John Erik Fornæss, Dynamics in several complex variables, CBMS Regional Conference Series in Mathematics, vol. 87, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. MR 1363948
- Günter Frank and Wilhelm Schwick, A counterexample to the generalized Bloch principle, New Zealand J. Math. 23 (1994), no. 2, 121–123. MR 1313447
- Günter Frank and Yufei Wang, On the meromorphic solutions of algebraic differential equations, preprint.
- Hirotaka Fujimoto, On the number of exceptional values of the Gauss maps of minimal surfaces, J. Math. Soc. Japan 40 (1988), no. 2, 235–247. MR 930599, DOI 10.2969/jmsj/04020235
- Hirotaka Fujimoto, Value distribution theory of the Gauss map of minimal surfaces in $\textbf {R}^m$, Aspects of Mathematics, E21, Friedr. Vieweg & Sohn, Braunschweig, 1993. MR 1218173, DOI 10.1007/978-3-322-80271-2
- A.A. Gol’dberg, On single-valued solutions of first-order differential equations, Ukrain. Math. Zh. 8 (1956), 254-261.
- W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9–42. MR 110807, DOI 10.2307/1969890
- W. K. Hayman, Research problems in function theory, The Athlone Press [University of London], London, 1967. MR 0217268
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, Ont., 1962. MR 0201608
- A. Hinkkanen, Normal families and Ahlfor’s five islands theorem, New Zealand J. Math. 22 (1993), no. 2, 39–41. MR 1244021
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Yung-hsing Ku, Sur les familles normales de fonctions méromorphes, Sci. Sinica 21 (1978), no. 4, 431–445 (French). MR 511294
- Ku Yongxing, Un critère de normalité des familles de fonctions méromorphes, Sci. Sinica Special Issue 1 (1979), 267-274 (Chinese).
- Serge Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. MR 886677, DOI 10.1007/978-1-4757-1945-1
- Peter Lappan, A criterion for a meromorphic function to be normal, Comment. Math. Helv. 49 (1974), 492–495. MR 379850, DOI 10.1007/BF02566744
- Peter Lappan, A uniform approach to normal families, Rev. Roumaine Math. Pures Appl. 39 (1994), no. 7, 691–702. Travaux de la Conférence Internationale d’Analyse Complexe et du $7^\textrm {e}$ Séminaire Roumano-Finlandais. MR 1319185
- Song-Ying Li and Hui Chun Xie, On normal families of meromorphic functions, Acta Math. Sinica 29 (1986), no. 4, 468–476 (Chinese). MR 867694
- F. Marty, Recherches sur le répartition des valeurs d’une fonction méromorphe, Ann. Fac. Sci. Univ. Toulouse (3) 23 (1931), 183-261.
- David Minda, Yosida functions, Lectures on complex analysis (Xian, 1987) World Sci. Publishing, Singapore, 1988, pp. 197–213. MR 996476
- Ruth Miniowitz, Normal families of quasimeromorphic mappings, Proc. Amer. Math. Soc. 84 (1982), no. 1, 35–43. MR 633273, DOI 10.1090/S0002-9939-1982-0633273-X
- Carlo Miranda, Sur un nouveau critère de normalité pour les familles de fonctions holomorphes, Bull. Soc. Math. France 63 (1935), 185-196.
- Paul Montel, Leçons sur les familles normales des fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.
- Erwin Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), no. 3, 239–259 (German). MR 516609, DOI 10.1007/BF01182271
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
- I. B. Oshkin, On a condition for the normality of families of holomorphic functions, Uspekhi Mat. Nauk 37 (1982), no. 2(224), 221–222 (Russian). MR 650781
- Robert Osserman, Proof of a conjecture of Nirenberg, Comm. Pure Appl. Math. 12 (1959), 229–232. MR 105700, DOI 10.1002/cpa.3160120203
- Robert Osserman, Minimal surfaces in $\textbf {R}^3$, Global differential geometry, MAA Stud. Math., vol. 27, Math. Assoc. America, Washington, DC, 1989, pp. 73–98. MR 1013809
- Xue Cheng Pang, Bloch’s principle and normal criterion, Sci. China Ser. A 32 (1989), no. 7, 782–791. MR 1057999
- Xue Cheng Pang, On normal criterion of meromorphic functions, Sci. China Ser. A 33 (1990), no. 5, 521–527. MR 1070538
- Pang Xue-cheng and Lawrence Zalcman, On theorems of Hayman and Clunie, New Zealand J. Math. (to appear).
- —, Normal families and shared values, preprint.
- Seppo Rickman, On the number of omitted values of entire quasiregular mappings, J. Analyse Math. 37 (1980), 100–117. MR 583633, DOI 10.1007/BF02797681
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
- Abraham Robinson, Metamathematical problems, J. Symbolic Logic 38 (1973), 500–516. MR 337471, DOI 10.2307/2273049
- Antonio Ros, The Gauss map of minimal surfaces, preprint.
- H. L. Royden, A criterion for the normality of a family of meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 499–500. MR 802513
- Lee A. Rubel, Four counterexamples to Bloch’s principle, Proc. Amer. Math. Soc. 98 (1986), no. 2, 257–260. MR 854029, DOI 10.1090/S0002-9939-1986-0854029-2
- Stanisław Saks and Antoni Zymund, Analytic Functions, 3rd ed., Elsevier, 1971.
- Joel L. Schiff, Normal families, Universitext, Springer-Verlag, New York, 1993. MR 1211641, DOI 10.1007/978-1-4612-0907-2
- Wilhelm Schwick, Normality criteria for families of meromorphic functions, J. Analyse Math. 52 (1989), 241–289. MR 981504, DOI 10.1007/BF02820480
- Wilhelm Schwick, On a normality criterion of H. L. Royden, New Zealand J. Math. 23 (1994), no. 1, 91–92. MR 1279130
- Wilhelm Schwick, Repelling periodic points in the Julia set, Bull. London Math. Soc. 29 (1997), no. 3, 314–316. MR 1435565, DOI 10.1112/S0024609396007035
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- H. Wu, Some theorems on projective hyperbolicity, J. Math. Soc. Japan 33 (1981), no. 1, 79–104. MR 597482, DOI 10.2969/jmsj/03310079
- Guo Fen Xue and Xue Cheng Pang, A criterion for normality of a family of meromorphic functions, J. East China Norm. Univ. Natur. Sci. Ed. 2 (1988), 15–22 (Chinese, with English summary). MR 981092
- Yang Le and Chang Kuang-hou, Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples, I. Un nouveau critère et quelques applications, Sci. Sinica 14 (1965), 1258-1271.
- —, Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples, II. Généralisations, Sci. Sinica 15 (1966), 433-453.
- Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), no. 8, 813–817. MR 379852, DOI 10.2307/2319796
- Lawrence Zalcman, Modern perspectives on classical function theory, Rocky Mountain J. Math. 12 (1982), no. 1, 75–92. MR 649740, DOI 10.1216/RMJ-1982-12-1-75
- —, Normal families revisited, Complex Analysis and Related Topics (J.J.O.O. Wiegerinck, ed.), University of Amsterdam, 1993, pp. 149-164.
- —, On some questions of Hayman, unpublished manuscript, 5pp., 1994.
- —, New light on normal families, Proceedings of the Ashkelon Workshop on Complex Function Theory (May, 1996) (L. Zalcman, ed.), Bar-Ilan Univ., 1997, pp. 237-245.
Additional Information
- Lawrence Zalcman
- Affiliation: Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
- Email: zalcman@macs.biu.ac.il
- Received by editor(s): October 15, 1997
- Received by editor(s) in revised form: May 26, 1998
- © Copyright 1998 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 35 (1998), 215-230
- MSC (1991): Primary 30D45; Secondary 30D35, 34A20, 58F23
- DOI: https://doi.org/10.1090/S0273-0979-98-00755-1
- MathSciNet review: 1624862