## Recent developments on the Ricci flow

HTML articles powered by AMS MathViewer

- by Huai-Dong Cao and Bennett Chow PDF
- Bull. Amer. Math. Soc.
**36**(1999), 59-74 Request permission

## Abstract:

This article reports recent developments of the research on Hamilton’s Ricci flow and its applications.## References

- Uwe Abresch and Wolfgang T. Meyer,
*Injectivity radius estimates and sphere theorems*, Comparison geometry (Berkeley, CA, 1993–94) Math. Sci. Res. Inst. Publ., vol. 30, Cambridge Univ. Press, Cambridge, 1997, pp. 1–47. MR**1452866**, DOI 10.2977/prims/1195166274 - Michael T. Anderson,
*Extrema of curvature functionals on the space of metrics on $3$-manifolds*, Calc. Var. Partial Differential Equations**5**(1997), no. 3, 199–269. MR**1438146**, DOI 10.1007/s005260050066 - Michael T. Anderson,
*Scalar curvature and geometrization conjectures for $3$-manifolds*, Comparison geometry (Berkeley, CA, 1993–94) Math. Sci. Res. Inst. Publ., vol. 30, Cambridge Univ. Press, Cambridge, 1997, pp. 49–82. MR**1452867** - Shigetoshi Bando,
*On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature*, J. Differential Geom.**19**(1984), no. 2, 283–297. MR**755227** - J. Bartz, M. Struwe, and R. Ye,
*A new approach to the Ricci flow on $S^2$*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**21**(1994), no. 3, 475–482. MR**1310637** - Huai Dong Cao,
*Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds*, Invent. Math.**81**(1985), no. 2, 359–372. MR**799272**, DOI 10.1007/BF01389058 - Huai Dong Cao,
*On Harnack’s inequalities for the Kähler-Ricci flow*, Invent. Math.**109**(1992), no. 2, 247–263. MR**1172691**, DOI 10.1007/BF01232027 - H.-D. Cao,
*Limits of solutions to the Kähler-Ricci flow*, J. Differential Geom.**45**(1997) 257-272. - Huai-Dong Cao,
*Existence of gradient Kähler-Ricci solitons*, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994) A K Peters, Wellesley, MA, 1996, pp. 1–16. MR**1417944** - H.-D. Cao and R. S. Hamilton,
*Gradient Kähler-Ricci solitons and periodic orbits*, Comm. Anal. Geom. (to appear). - Haiwen Chen,
*Pointwise $\frac 14$-pinched $4$-manifolds*, Ann. Global Anal. Geom.**9**(1991), no. 2, 161–176. MR**1136125**, DOI 10.1007/BF00776854 - Bennett Chow,
*The Ricci flow on the $2$-sphere*, J. Differential Geom.**33**(1991), no. 2, 325–334. MR**1094458** - Bennett Chow and Sun-Chin Chu,
*A geometric interpretation of Hamilton’s Harnack inequality for the Ricci flow*, Math. Res. Lett.**2**(1995), no. 6, 701–718. MR**1362964**, DOI 10.4310/MRL.1995.v2.n6.a4 - Jeff Cheeger and Mikhael Gromov,
*Collapsing Riemannian manifolds while keeping their curvature bounded. I*, J. Differential Geom.**23**(1986), no. 3, 309–346. MR**852159** - Dennis M. DeTurck,
*Deforming metrics in the direction of their Ricci tensors*, J. Differential Geom.**18**(1983), no. 1, 157–162. MR**697987** - James Eells Jr. and J. H. Sampson,
*Harmonic mappings of Riemannian manifolds*, Amer. J. Math.**86**(1964), 109–160. MR**164306**, DOI 10.2307/2373037 - Richard S. Hamilton,
*Three-manifolds with positive Ricci curvature*, J. Differential Geometry**17**(1982), no. 2, 255–306. MR**664497** - Richard S. Hamilton,
*Four-manifolds with positive curvature operator*, J. Differential Geom.**24**(1986), no. 2, 153–179. MR**862046** - Richard S. Hamilton,
*The Ricci flow on surfaces*, Mathematics and general relativity (Santa Cruz, CA, 1986) Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237–262. MR**954419**, DOI 10.1090/conm/071/954419 - Richard S. Hamilton,
*An isoperimetric estimate for the Ricci flow on the two-sphere*, Modern methods in complex analysis (Princeton, NJ, 1992) Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 191–200. MR**1369139**, DOI 10.1080/09502389500490321 - R. S. Hamilton,
*Non-singular solutions of the Ricci flow on three-manifolds*, Comm. Anal. Geom. (1998) to appear. - R. S. Hamilton,
*Four-manifolds with positive isotropic curvature*, Comm. Anal. Geom.**5**(1997) 1-92. - Richard S. Hamilton,
*The Harnack estimate for the Ricci flow*, J. Differential Geom.**37**(1993), no. 1, 225–243. MR**1198607** - Richard S. Hamilton,
*Eternal solutions to the Ricci flow*, J. Differential Geom.**38**(1993), no. 1, 1–11. MR**1231700** - Richard S. Hamilton,
*The formation of singularities in the Ricci flow*, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR**1375255** - Gerhard Huisken,
*Ricci deformation of the metric on a Riemannian manifold*, J. Differential Geom.**21**(1985), no. 1, 47–62. MR**806701** - James Isenberg and Martin Jackson,
*Ricci flow of locally homogeneous geometries on closed manifolds*, J. Differential Geom.**35**(1992), no. 3, 723–741. MR**1163457** - Thomas Ivey,
*Ricci solitons on compact three-manifolds*, Differential Geom. Appl.**3**(1993), no. 4, 301–307. MR**1249376**, DOI 10.1016/0926-2245(93)90008-O - Peter Li and Shing-Tung Yau,
*On the parabolic kernel of the Schrödinger operator*, Acta Math.**156**(1986), no. 3-4, 153–201. MR**834612**, DOI 10.1007/BF02399203 - Christophe Margerin,
*Un théorème optimal pour le pincement faible en dimension $4$*, C. R. Acad. Sci. Paris Sér. I Math.**303**(1986), no. 17, 877–880 (French, with English summary). MR**870911** - Mario J. Micallef and John Douglas Moore,
*Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes*, Ann. of Math. (2)**127**(1988), no. 1, 199–227. MR**924677**, DOI 10.2307/1971420 - Ngaiming Mok,
*The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature*, J. Differential Geom.**27**(1988), no. 2, 179–214. MR**925119** - Seiki Nishikawa,
*Deformation of Riemannian metrics and manifolds with bounded curvature ratios*, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 343–352. MR**840284**, DOI 10.1090/pspum/044/840284 - Richard Schoen,
*Conformal deformation of a Riemannian metric to constant scalar curvature*, J. Differential Geom.**20**(1984), no. 2, 479–495. MR**788292** - R. Schoen and Shing Tung Yau,
*Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature*, Ann. of Math. (2)**110**(1979), no. 1, 127–142. MR**541332**, DOI 10.2307/1971247 - Peter Scott,
*The geometries of $3$-manifolds*, Bull. London Math. Soc.**15**(1983), no. 5, 401–487. MR**705527**, DOI 10.1112/blms/15.5.401 - Wan-Xiong Shi,
*Deforming the metric on complete Riemannian manifolds*, J. Differential Geom.**30**(1989), no. 1, 223–301. MR**1001277** - Wan-Xiong Shi,
*Complete noncompact Kähler manifolds with positive holomorphic bisectional curvature*, Bull. Amer. Math. Soc. (N.S.)**23**(1990), no. 2, 437–440. MR**1044171**, DOI 10.1090/S0273-0979-1990-15954-3 - Wan-Xiong Shi,
*Ricci flow and the uniformization on complete noncompact Kähler manifolds*, J. Differential Geom.**45**(1997), no. 1, 94–220. MR**1443333** - William P. Thurston,
*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, DOI 10.1090/S0273-0979-1982-15003-0

## Additional Information

**Huai-Dong Cao**- Affiliation: Department of Mathematics, Texas A&M University, College Station, TX 77843
- MR Author ID: 224609
- ORCID: 0000-0002-4956-4849
- Email: cao@math.tamu.edu
**Bennett Chow**- Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, MN 55455
- MR Author ID: 229249
- Email: bchow@math.umn.edu
- Received by editor(s): June 17, 1997
- Received by editor(s) in revised form: October 15, 1998
- Additional Notes: Authors partially supported by the NSF
- © Copyright 1999 American Mathematical Society
- Journal: Bull. Amer. Math. Soc.
**36**(1999), 59-74 - MSC (1991): Primary 58G11; Secondary 53C21, 35K55
- DOI: https://doi.org/10.1090/S0273-0979-99-00773-9
- MathSciNet review: 1655479