Optimization, relaxation and Young measures
Author:
Pablo Pedregal
Journal:
Bull. Amer. Math. Soc. 36 (1999), 27-58
MSC (1991):
Primary 49J15, 49J45, 73C50, 73K20, 73V25
DOI:
https://doi.org/10.1090/S0273-0979-99-00774-0
MathSciNet review:
1655480
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We review the use of Young measures in analyzing relaxed and generalized formulations for typical problems of optimization including variational principles, optimal control problems, models in materials science, optimal design problems and nonlocal optimization problems.
- [1] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), no. 4, 570–598. MR 747970, https://doi.org/10.1137/0322035
- [2] Balder, E. J. 1995 Lectures on Young Measures, Cahiers de Ceremade, 9512.
- [3] John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 475169, https://doi.org/10.1007/BF00279992
- [4] J. M. Ball, A version of the fundamental theorem for Young measures, PDEs and continuum models of phase transitions (Nice, 1988) Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207–215. MR 1036070, https://doi.org/10.1007/BFb0024945
- [5] J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987), no. 1, 13–52. MR 906132, https://doi.org/10.1007/BF00281246
- [6] Ball, J. M. and James, R. 1992 Proposed experimental tests of a theory of fine microstructure and the two well problem, Phil. Trans. R. Soc. London A, 338, 389-450.
- [7] Viorel Barbu, Mathematical methods in optimization of differential systems, Mathematics and its Applications, vol. 310, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated and revised from the 1989 Romanian original. MR 1325922
- [8] Éric Bonnetier and Carlos Conca, Relaxation totale d’un problème d’optimisation de plaques, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 10, 931–936 (French, with English and French summaries). MR 1249363
- [9] É. Bonnetier and C. Conca, Approximation of Young measures by functions and application to a problem of optimal design for plates with variable thickness, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 3, 399–422. MR 1286912, https://doi.org/10.1017/S0308210500028717
- [10] É. Bonnetier and M. Vogelius, Relaxation of a compliance functional for a plate optimization problem, Applications of multiple scaling in mechanics (Paris, 1986) Rech. Math. Appl., vol. 4, Masson, Paris, 1987, pp. 31–53. MR 901988
- [11] Giuseppe Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics Series, vol. 207, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1020296
- [12] G. Buttazzo and G. Dal Maso, Γ-convergence and optimal control problems, J. Optim. Theory Appl. 38 (1982), no. 3, 385–407. MR 686213, https://doi.org/10.1007/BF00935345
- [13] Giuseppe Buttazzo and Gianni Dal Maso, Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 531–535. MR 1027896, https://doi.org/10.1090/S0273-0979-1990-15971-3
- [14] Giuseppe Buttazzo and Gianni Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1991), no. 1, 17–49. MR 1076053, https://doi.org/10.1007/BF01442391
- [15] Giuseppe Buttazzo and Gianni Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal. 122 (1993), no. 2, 183–195. MR 1217590, https://doi.org/10.1007/BF00378167
- [16] Elio Cabib, A relaxed control problem for two-phase conductors, Ann. Univ. Ferrara Sez. VII (N.S.) 33 (1987), 207–218 (1988) (English, with Italian summary). MR 958394
- [17] E. Cabib and G. Dal Maso, On a class of optimum problems in structural design, J. Optim. Theory Appl. 56 (1988), no. 1, 39–65. MR 922377, https://doi.org/10.1007/BF00938526
- [18] Lamberto Cesari, Optimization—theory and applications, Applications of Mathematics (New York), vol. 17, Springer-Verlag, New York, 1983. Problems with ordinary differential equations. MR 688142
- [19] Frank H. Clarke, Admissible relaxation in variational and control problems, J. Math. Anal. Appl. 51 (1975), no. 3, 557–576. MR 407676, https://doi.org/10.1016/0022-247X(75)90107-9
- [20] B. Dacorogna, Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Functional Analysis 46 (1982), no. 1, 102–118. MR 654467, https://doi.org/10.1016/0022-1236(82)90046-5
- [21] Bernard Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989. MR 990890
- [22] Antonio De Simone, Energy minimizers for large ferromagnetic bodies, Arch. Rational Mech. Anal. 125 (1993), no. 2, 99–143. MR 1245068, https://doi.org/10.1007/BF00376811
- [23] Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics, vol. 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1034481
- [24] Irene Fonseca, David Kinderlehrer, and Pablo Pedregal, Energy functionals depending on elastic strain and chemical composition, Calc. Var. Partial Differential Equations 2 (1994), no. 3, 283–313. MR 1385072, https://doi.org/10.1007/BF01235532
- [25] Fonseca, I., Müller, S. and Pedregal, P. 1998 Analysis of concentration and oscillation effects generated by gradients I, SIAM J. Math. Anal., 29, n 3, 736-756. CMP 98:11
- [26] Freddi, L. 1994 Rilassamento e convergenza di problemi di controllo ottimo, Preprint del Dipartimento di Matematica dell'Universitá di Pisa.
- [27] R. V. Gamkrelidze, Osnovy optimal′nogo upravleniya, Izdat. Tbilis. Univ., Tbilisi, 1975 (Russian). MR 0686791
- [28] Patrick Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16 (1991), no. 11, 1761–1794. MR 1135919, https://doi.org/10.1080/03605309108820822
- [29] R. D. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Contin. Mech. Thermodyn. 2 (1990), no. 3, 215–239. MR 1069400, https://doi.org/10.1007/BF01129598
- [30] James, R. D. and Kinderlehrer, D. 1993 A theory of magnetostriction with application to TbDyFe2, Phil. Mag., B 68, 237-274.
- [31] James, R. D. and Kinderlehrer, D., Magnetoelastic interactions, Zeitschrift für Angewandte Mathematik und Mechanik 76 (Suppl. 2), 1996, pp. 401-404.
- [32] James, R. D., Kinderlehrer, D., and Ma, L., Modeling magnetostrictive microstructure under loading, in Mathematics of Microstructure Evolution (eds. L.-Q Chen, B. Fultz, J. W. Cahn, J. Manning, J. Morral and J. Simmonds), TMS/SIAM, to appear.
- [33] R. D. James and Stefan Müller, Internal variables and fine-scale oscillations in micromagnetics, Contin. Mech. Thermodyn. 6 (1994), no. 4, 291–336. MR 1308877, https://doi.org/10.1007/BF01140633
- [34] James, R. D. and Wuttig, M. 1996 Magnetostriction of Martensite, Phil. Mag. A, in press.
- [35] James, R. D. and Wuttig, M. , 1996 Alternative smart materials, Proceedings SPIE Symposium on ``Mathematics and Control in Smart Structures'' (ed. V. V. Varadan and J. Chandra), Vol. 2715, 420-426.
- [36] David Kinderlehrer and Pablo Pedregal, Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), no. 4, 329–365. MR 1120852, https://doi.org/10.1007/BF00375279
- [37] David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal. 23 (1992), no. 1, 1–19. MR 1145159, https://doi.org/10.1137/0523001
- [38] David Kinderlehrer and Pablo Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. 4 (1994), no. 1, 59–90. MR 1274138, https://doi.org/10.1007/BF02921593
- [39]
Robert
V. Kohn and Gilbert
Strang, Optimal design and relaxation of variational problems.
I, Comm. Pure Appl. Math. 39 (1986), no. 1,
113–137. MR
820342, https://doi.org/10.1002/cpa.3160390107
Robert V. Kohn and Gilbert Strang, Optimal design and relaxation of variational problems. III, Comm. Pure Appl. Math. 39 (1986), no. 3, 353–377. MR 829845, https://doi.org/10.1002/cpa.3160390305 - [40] Robert V. Kohn and Michael Vogelius, Thin plates with rapidly varying thickness, and their relation to structural optimization, Homogenization and effective moduli of materials and media (Minneapolis, Minn., 1984/1985) IMA Vol. Math. Appl., vol. 1, Springer, New York, 1986, pp. 126–149. MR 859414, https://doi.org/10.1007/978-1-4613-8646-9_6
- [41] E. Mascolo and L. Migliaccio, Relaxation in optimal control theory, Ann. Univ. Ferrara Sez. VII (N.S.) 34 (1988), 247–263. MR 1015563
- [42] E. Mascolo and L. Migliaccio, Relaxation methods in control theory, Appl. Math. Optim. 20 (1989), no. 1, 97–103. MR 989434, https://doi.org/10.1007/BF01447649
- [43] Müller, S. 1998 Variational models for microstructure and phase transitions, Lecture notes no. 2, MPI, Leipzig.
- [44] Morrey, Ch. B., 1952 Quasiconvexity and the lower semicontinuity of multiple integrals, Pacific J. Math., 2, 25-53. MR 14:992a
- [45] Murat, F. 1977 H-convergence, Séminaire d'analyse fonctionelle et numerique de l'Université d'Alger. CMP 98:07
- [46] F. Murat and L. Tartar, Calcul des variations et homogénéisation, Homogenization methods: theory and applications in physics (Bréau-sans-Nappe, 1983) Collect. Dir. Études Rech. Élec. France, vol. 57, Eyrolles, Paris, 1985, pp. 319–369 (French). MR 844873
- [47] F. Murat and L. Tartar, Optimality conditions and homogenization, Nonlinear variational problems (Isola d’Elba, 1983) Res. Notes in Math., vol. 127, Pitman, Boston, MA, 1985, pp. 1–8. MR 807532
- [49] Muñoz, J. and Pedregal, P. 1998 On the relaxation of an optimal design problem for plates, Asympt. Anal., 16. n 2, 125-140. CMP 98:09
- [48] Muñoz, J. and Pedregal, P. 1998 A refinement on existence of solutions to optimal control problems, submitted.
- [50] P. Pedregal, Relaxation in ferromagnetism: the rigid case, J. Nonlinear Sci. 4 (1994), no. 2, 105–125. MR 1267170, https://doi.org/10.1007/BF02430629
- [51] Pablo Pedregal, Numerical approximation of parametrized measures, Numer. Funct. Anal. Optim. 16 (1995), no. 7-8, 1049–1066. MR 1355286, https://doi.org/10.1080/01630569508816659
- [52] Pablo Pedregal, On the numerical analysis of non-convex variational problems, Numer. Math. 74 (1996), no. 3, 325–336. MR 1408606, https://doi.org/10.1007/s002110050219
- [53] Pablo Pedregal, Parametrized measures and variational principles, Progress in Nonlinear Differential Equations and their Applications, vol. 30, Birkhäuser Verlag, Basel, 1997. MR 1452107
- [54] Pablo Pedregal, Nonlocal variational principles, Nonlinear Anal. 29 (1997), no. 12, 1379–1392. MR 1484911, https://doi.org/10.1016/S0362-546X(96)00185-X
- [55] Pedregal, P. 1998 Equilibrium conditions for Young measures, SIAM J. Cont. Opt., 36, n 3, 797-813. CMP 98:11
- [56] Pedregal, P. 1998 Relaxation in magnetostriction, submitted.
- [57] Pedregal, P. 1998 Optimal design and constrained quasiconvexity, preprint.
- [58] Robert C. Rogers, A nonlocal model for the exchange energy in ferromagnetic materials, J. Integral Equations Appl. 3 (1991), no. 1, 85–127. MR 1094932, https://doi.org/10.1216/jiea/1181075602
- [59] Tomáš Roubíček, Relaxation in optimization theory and variational calculus, De Gruyter Series in Nonlinear Analysis and Applications, vol. 4, Walter de Gruyter & Co., Berlin, 1997. MR 1458067
- [60] Vladimír Šverák, New examples of quasiconvex functions, Arch. Rational Mech. Anal. 119 (1992), no. 4, 293–300. MR 1179688, https://doi.org/10.1007/BF01837111
- [61] Vladimír Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 185–189. MR 1149994, https://doi.org/10.1017/S0308210500015080
- [62] Tartar, L. 1977 Cours Peccot, Collège de France.
- [63] L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212. MR 584398
- [64] L. Tartar, Estimations fines des coefficients homogénéisés, Ennio De Giorgi colloquium (Paris, 1983) Res. Notes in Math., vol. 125, Pitman, Boston, MA, 1985, pp. 168–187 (French). MR 909716
- [65] Luc Tartar, 𝐻-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 3-4, 193–230. MR 1069518, https://doi.org/10.1017/S0308210500020606
- [66] Luc Tartar, On mathematical tools for studying partial differential equations of continuum physics: 𝐻-measures and Young measures, Developments in partial differential equations and applications to mathematical physics (Ferrara, 1991) Plenum, New York, 1992, pp. 201–217. MR 1213932
- [67] Michel Valadier, Young measures, Methods of nonconvex analysis (Varenna, 1989) Lecture Notes in Math., vol. 1446, Springer, Berlin, 1990, pp. 152–188. MR 1079763, https://doi.org/10.1007/BFb0084935
- [68] J. Warga, Optimal control of differential and functional equations, Academic Press, New York-London, 1972. MR 0372708
- [69] Young, L. C. 1937 Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III, 30, 212-234.
- [70] Young, L. C. 1942 Generalized surfaces in the calculus of variations, I and II, Ann. Math., 43, 84-103 and 530-544. MR 3:249a; MR 4:49d
- [71] L. C. Young, Lectures on the calculus of variations and optimal control theory, Foreword by Wendell H. Fleming, W. B. Saunders Co., Philadelphia-London-Toronto, Ont., 1969. MR 0259704
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 49J15, 49J45, 73C50, 73K20, 73V25
Retrieve articles in all journals with MSC (1991): 49J15, 49J45, 73C50, 73K20, 73V25
Additional Information
Pablo Pedregal
Affiliation:
ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
Email:
ppedrega@ind-cr.uclm.es
DOI:
https://doi.org/10.1090/S0273-0979-99-00774-0
Keywords:
Integral functionals,
oscillatory behavior,
generalized optimization problems,
local and nonlocal admissibility constraints
Received by editor(s):
October 1, 1997
Received by editor(s) in revised form:
October 14, 1998
Article copyright:
© Copyright 1999
American Mathematical Society