Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Optimization, relaxation and Young measures
HTML articles powered by AMS MathViewer

by Pablo Pedregal PDF
Bull. Amer. Math. Soc. 36 (1999), 27-58 Request permission


We review the use of Young measures in analyzing relaxed and generalized formulations for typical problems of optimization including variational principles, optimal control problems, models in materials science, optimal design problems and nonlocal optimization problems.
  • E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), no. 4, 570–598. MR 747970, DOI 10.1137/0322035
  • Balder, E. J. 1995 Lectures on Young Measures, Cahiers de Ceremade, 9512.
  • John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 475169, DOI 10.1007/BF00279992
  • J. M. Ball, A version of the fundamental theorem for Young measures, PDEs and continuum models of phase transitions (Nice, 1988) Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207–215. MR 1036070, DOI 10.1007/BFb0024945
  • J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987), no. 1, 13–52. MR 906132, DOI 10.1007/BF00281246
  • Ball, J. M. and James, R. 1992 Proposed experimental tests of a theory of fine microstructure and the two well problem, Phil. Trans. R. Soc. London A, 338, 389-450.
  • Viorel Barbu, Mathematical methods in optimization of differential systems, Mathematics and its Applications, vol. 310, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated and revised from the 1989 Romanian original. MR 1325922, DOI 10.1007/978-94-011-0760-0
  • Éric Bonnetier and Carlos Conca, Relaxation totale d’un problème d’optimisation de plaques, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 10, 931–936 (French, with English and French summaries). MR 1249363
  • É. Bonnetier and C. Conca, Approximation of Young measures by functions and application to a problem of optimal design for plates with variable thickness, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 3, 399–422. MR 1286912, DOI 10.1017/S0308210500028717
  • É. Bonnetier and M. Vogelius, Relaxation of a compliance functional for a plate optimization problem, Applications of multiple scaling in mechanics (Paris, 1986) Rech. Math. Appl., vol. 4, Masson, Paris, 1987, pp. 31–53. MR 901988
  • Giuseppe Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics Series, vol. 207, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1020296
  • G. Buttazzo and G. Dal Maso, $\Gamma$-convergence and optimal control problems, J. Optim. Theory Appl. 38 (1982), no. 3, 385–407. MR 686213, DOI 10.1007/BF00935345
  • Giuseppe Buttazzo and Gianni Dal Maso, Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 531–535. MR 1027896, DOI 10.1090/S0273-0979-1990-15971-3
  • Giuseppe Buttazzo and Gianni Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1991), no. 1, 17–49. MR 1076053, DOI 10.1007/BF01442391
  • Giuseppe Buttazzo and Gianni Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal. 122 (1993), no. 2, 183–195. MR 1217590, DOI 10.1007/BF00378167
  • Elio Cabib, A relaxed control problem for two-phase conductors, Ann. Univ. Ferrara Sez. VII (N.S.) 33 (1987), 207–218 (1988) (English, with Italian summary). MR 958394
  • E. Cabib and G. Dal Maso, On a class of optimum problems in structural design, J. Optim. Theory Appl. 56 (1988), no. 1, 39–65. MR 922377, DOI 10.1007/BF00938526
  • Lamberto Cesari, Optimization—theory and applications, Applications of Mathematics (New York), vol. 17, Springer-Verlag, New York, 1983. Problems with ordinary differential equations. MR 688142, DOI 10.1007/978-1-4613-8165-5
  • Frank H. Clarke, Admissible relaxation in variational and control problems, J. Math. Anal. Appl. 51 (1975), no. 3, 557–576. MR 407676, DOI 10.1016/0022-247X(75)90107-9
  • B. Dacorogna, Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Functional Analysis 46 (1982), no. 1, 102–118. MR 654467, DOI 10.1016/0022-1236(82)90046-5
  • Bernard Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989. MR 990890, DOI 10.1007/978-3-642-51440-1
  • Antonio De Simone, Energy minimizers for large ferromagnetic bodies, Arch. Rational Mech. Anal. 125 (1993), no. 2, 99–143. MR 1245068, DOI 10.1007/BF00376811
  • Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics, vol. 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1034481, DOI 10.1090/cbms/074
  • Irene Fonseca, David Kinderlehrer, and Pablo Pedregal, Energy functionals depending on elastic strain and chemical composition, Calc. Var. Partial Differential Equations 2 (1994), no. 3, 283–313. MR 1385072, DOI 10.1007/BF01235532
  • Fonseca, I., Müller, S. and Pedregal, P. 1998 Analysis of concentration and oscillation effects generated by gradients I, SIAM J. Math. Anal., 29, n 3, 736-756.
  • Freddi, L. 1994 Rilassamento e convergenza di problemi di controllo ottimo, Preprint del Dipartimento di Matematica dell’Universitá di Pisa.
  • R. V. Gamkrelidze, Osnovy optimal′nogo upravleniya, Izdat. Tbilis. Univ., Tbilisi, 1975 (Russian). MR 0686791
  • Patrick Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16 (1991), no. 11, 1761–1794. MR 1135919, DOI 10.1080/03605309108820822
  • R. D. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Contin. Mech. Thermodyn. 2 (1990), no. 3, 215–239. MR 1069400, DOI 10.1007/BF01129598
  • James, R. D. and Kinderlehrer, D. 1993 A theory of magnetostriction with application to TbDyFe2, Phil. Mag., B 68, 237-274.
  • James, R. D. and Kinderlehrer, D., Magnetoelastic interactions, Zeitschrift für Angewandte Mathematik und Mechanik 76 (Suppl. 2), 1996, pp. 401-404.
  • James, R. D., Kinderlehrer, D., and Ma, L., Modeling magnetostrictive microstructure under loading, in Mathematics of Microstructure Evolution (eds. L.-Q Chen, B. Fultz, J. W. Cahn, J. Manning, J. Morral and J. Simmonds), TMS/SIAM, to appear.
  • R. D. James and Stefan Müller, Internal variables and fine-scale oscillations in micromagnetics, Contin. Mech. Thermodyn. 6 (1994), no. 4, 291–336. MR 1308877, DOI 10.1007/BF01140633
  • James, R. D. and Wuttig, M. 1996 Magnetostriction of Martensite, Phil. Mag. A, in press.
  • James, R. D. and Wuttig, M. , 1996 Alternative smart materials, Proceedings SPIE Symposium on “Mathematics and Control in Smart Structures” (ed. V. V. Varadan and J. Chandra), Vol. 2715, 420-426.
  • David Kinderlehrer and Pablo Pedregal, Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), no. 4, 329–365. MR 1120852, DOI 10.1007/BF00375279
  • David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal. 23 (1992), no. 1, 1–19. MR 1145159, DOI 10.1137/0523001
  • David Kinderlehrer and Pablo Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. 4 (1994), no. 1, 59–90. MR 1274138, DOI 10.1007/BF02921593
  • Robert V. Kohn and Gilbert Strang, Optimal design and relaxation of variational problems. I, Comm. Pure Appl. Math. 39 (1986), no. 1, 113–137. MR 820342, DOI 10.1002/cpa.3160390107
  • Robert V. Kohn and Michael Vogelius, Thin plates with rapidly varying thickness, and their relation to structural optimization, Homogenization and effective moduli of materials and media (Minneapolis, Minn., 1984/1985) IMA Vol. Math. Appl., vol. 1, Springer, New York, 1986, pp. 126–149. MR 859414, DOI 10.1007/978-1-4613-8646-9_{6}
  • E. Mascolo and L. Migliaccio, Relaxation in optimal control theory, Ann. Univ. Ferrara Sez. VII (N.S.) 34 (1988), 247–263. MR 1015563
  • E. Mascolo and L. Migliaccio, Relaxation methods in control theory, Appl. Math. Optim. 20 (1989), no. 1, 97–103. MR 989434, DOI 10.1007/BF01447649
  • Müller, S. 1998 Variational models for microstructure and phase transitions, Lecture notes no. 2, MPI, Leipzig.
  • P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
  • Murat, F. 1977 H-convergence, Séminaire d’analyse fonctionelle et numerique de l’Université d’Alger.
  • F. Murat and L. Tartar, Calcul des variations et homogénéisation, Homogenization methods: theory and applications in physics (Bréau-sans-Nappe, 1983) Collect. Dir. Études Rech. Élec. France, vol. 57, Eyrolles, Paris, 1985, pp. 319–369 (French). MR 844873
  • F. Murat and L. Tartar, Optimality conditions and homogenization, Nonlinear variational problems (Isola d’Elba, 1983) Res. Notes in Math., vol. 127, Pitman, Boston, MA, 1985, pp. 1–8. MR 807532
  • Muñoz, J. and Pedregal, P. 1998 On the relaxation of an optimal design problem for plates, Asympt. Anal., 16. n 2, 125-140.
  • Muñoz, J. and Pedregal, P. 1998 A refinement on existence of solutions to optimal control problems, submitted.
  • P. Pedregal, Relaxation in ferromagnetism: the rigid case, J. Nonlinear Sci. 4 (1994), no. 2, 105–125. MR 1267170, DOI 10.1007/BF02430629
  • Pablo Pedregal, Numerical approximation of parametrized measures, Numer. Funct. Anal. Optim. 16 (1995), no. 7-8, 1049–1066. MR 1355286, DOI 10.1080/01630569508816659
  • Pablo Pedregal, On the numerical analysis of non-convex variational problems, Numer. Math. 74 (1996), no. 3, 325–336. MR 1408606, DOI 10.1007/s002110050219
  • Pablo Pedregal, Parametrized measures and variational principles, Progress in Nonlinear Differential Equations and their Applications, vol. 30, Birkhäuser Verlag, Basel, 1997. MR 1452107, DOI 10.1007/978-3-0348-8886-8
  • Pablo Pedregal, Nonlocal variational principles, Nonlinear Anal. 29 (1997), no. 12, 1379–1392. MR 1484911, DOI 10.1016/S0362-546X(96)00185-X
  • Pedregal, P. 1998 Equilibrium conditions for Young measures, SIAM J. Cont. Opt., 36, n 3, 797-813.
  • Pedregal, P. 1998 Relaxation in magnetostriction, submitted.
  • Pedregal, P. 1998 Optimal design and constrained quasiconvexity, preprint.
  • Robert C. Rogers, A nonlocal model for the exchange energy in ferromagnetic materials, J. Integral Equations Appl. 3 (1991), no. 1, 85–127. MR 1094932, DOI 10.1216/jiea/1181075602
  • Tomáš Roubíček, Relaxation in optimization theory and variational calculus, De Gruyter Series in Nonlinear Analysis and Applications, vol. 4, Walter de Gruyter & Co., Berlin, 1997. MR 1458067, DOI 10.1515/9783110811919
  • Vladimír Šverák, New examples of quasiconvex functions, Arch. Rational Mech. Anal. 119 (1992), no. 4, 293–300. MR 1179688, DOI 10.1007/BF01837111
  • Vladimír Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 185–189. MR 1149994, DOI 10.1017/S0308210500015080
  • Tartar, L. 1977 Cours Peccot, Collège de France.
  • L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212. MR 584398
  • L. Tartar, Estimations fines des coefficients homogénéisés, Ennio De Giorgi colloquium (Paris, 1983) Res. Notes in Math., vol. 125, Pitman, Boston, MA, 1985, pp. 168–187 (French). MR 909716
  • Luc Tartar, $H$-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 3-4, 193–230. MR 1069518, DOI 10.1017/S0308210500020606
  • Luc Tartar, On mathematical tools for studying partial differential equations of continuum physics: $H$-measures and Young measures, Developments in partial differential equations and applications to mathematical physics (Ferrara, 1991) Plenum, New York, 1992, pp. 201–217. MR 1213932
  • Michel Valadier, Young measures, Methods of nonconvex analysis (Varenna, 1989) Lecture Notes in Math., vol. 1446, Springer, Berlin, 1990, pp. 152–188. MR 1079763, DOI 10.1007/BFb0084935
  • J. Warga, Optimal control of differential and functional equations, Academic Press, New York-London, 1972. MR 0372708
  • Young, L. C. 1937 Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III, 30, 212-234.
  • Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
  • L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia-London-Toronto, Ont., 1969. Foreword by Wendell H. Fleming. MR 0259704
Similar Articles
Additional Information
  • Pablo Pedregal
  • Affiliation: ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
  • Email:
  • Received by editor(s): October 1, 1997
  • Received by editor(s) in revised form: October 14, 1998
  • © Copyright 1999 American Mathematical Society
  • Journal: Bull. Amer. Math. Soc. 36 (1999), 27-58
  • MSC (1991): Primary 49J15, 49J45, 73C50, 73K20, 73V25
  • DOI:
  • MathSciNet review: 1655480