Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: C. M. Newman
Title: Topics in disordered systems
Additional book information: Birkhäuser-Verlag, Basel, 1997, vii + 88 pp., ISBN 3-7643-5777-0, $22.50$

References [Enhancements On Off] (What's this?)

  • Anton Bovier and Pierre Picco (eds.), Mathematical aspects of spin glasses and neural networks, Progress in Probability, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1601723
  • [EA]
    S.F. Edwards and P.W. Anderson, Theory of spin glasses, J. Phys. F 5 (1975) 965-974.
    K.H. Fisher and J.A. Hertz, Spin Glasses, Cambridge University Press, Cambridge, 1991.
    D.S. Fisher and D.A. Huse, Ordered phase of short-range Ising spin glasses, Phys. Rev. Lett. 56 (1986) 1601-1604.
  • C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, Physica 57 (1972), 536–564. MR 359655
  • Jürg Fröhlich, Mathematical aspects of the physics of disordered systems, Phénomènes critiques, systèmes aléatoires, théories de jauge, Part I, II (Les Houches, 1984) North-Holland, Amsterdam, 1986, pp. 725–893. With the collaboration of A. Bovier and U. Glaus. MR 880538
  • Hans-Otto Georgii, Gibbs measures and phase transitions, De Gruyter Studies in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1988. MR 956646, DOI 10.1515/9783110850147
  • [Ka]
    T. Kasuya, A theory of metallic ferro- and antiferromagnetism in Zener's model, Progr. Theoret. Phys. 16 (1956) 45-57.
    J. Krug and H. Spohn, Kinetic roughening of growing surfaces, in Solids Far from Equilibrium: Growth, Morphology and Defects (C. Godrèche, ed.) 479-582, Cambridge University Press, Cambridge, 1991.
  • Cristina Licea and Charles M. Newman, Geodesics in two-dimensional first-passage percolation, Ann. Probab. 24 (1996), no. 1, 399–410. MR 1387641, DOI 10.1214/aop/1042644722
  • C. Licea, C. M. Newman, and M. S. T. Piza, Superdiffusivity in first-passage percolation, Probab. Theory Related Fields 106 (1996), no. 4, 559–591. MR 1421992, DOI 10.1007/s004400050075
  • [Mc]
    W.L. McMillan, Scaling theory of Ising spin glasses, J. Phys. C 17 (1984) 3179-3187.
  • Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro, Spin glass theory and beyond, World Scientific Lecture Notes in Physics, vol. 9, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. MR 1026102
  • [My]
    J.A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor and Francis, London, 1993.
  • Charles M. Newman, Disordered Ising systems and random cluster representations, Probability and phase transition (Cambridge, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 420, Kluwer Acad. Publ., Dordrecht, 1994, pp. 247–260. MR 1283186, DOI 10.1007/978-94-015-8326-8_{1}5
  • [NS92]
    C.M. Newman and D.L. Stein, Multiple states and thermodynamic limits in short ranged spin glass models, Phys. Rev. B 46 (1992) 973-982.
  • C. M. Newman and D. L. Stein, Ground-state structure in a highly disordered spin-glass model, J. Statist. Phys. 82 (1996), no. 3-4, 1113–1132. MR 1372437, DOI 10.1007/BF02179805
  • [NS96b]
    C.M. Newman and D.L. Stein, Non-mean-field behavior of realistic spin glass, Phys. Rev. Lett. 76 (1996) 515-518.
    C.M. Newman and D.L. Stein, Spatial inhomogeneity and thermodynamic chaos, Phys. Rev. Lett. 76 (1996) 4821-4824.
    G. Parisi, Infinite number of order parameters for spin-glasses, Phys. Rev. Lett. 43 (1979) 1754-1756.
    M.A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96 (1954) 99-102.
    D. Sherrington and S. Kirkpatrick, Solvable model of a spin glass, Phys. Rev. Lett. 35 (1975) 1792-1796.
  • Barry Simon, The statistical mechanics of lattice gases. Vol. I, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1993. MR 1239893, DOI 10.1515/9781400863433
  • Jan Wehr, On the number of infinite geodesics and ground states in disordered systems, J. Statist. Phys. 87 (1997), no. 1-2, 439–447. MR 1453745, DOI 10.1007/BF02181495
  • [Yo]
    K. Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev. 106 (1957) 893-898.

    Review Information:

    Reviewer: Kenneth S. Alexander
    Affiliation: University of Southern California, Los Angeles
    Journal: Bull. Amer. Math. Soc. 36 (1999), 267-270
    Keywords: Disordered system, spin glass, Ising model, random cluster model
    Published electronically: February 22, 1999
    Additional Notes: Research supported by NSF grant DMS-9802368.
    Review copyright: © Copyright 1999 American Mathematical Society