Aspects of global Riemannian geometry
Author:
Peter Petersen
Journal:
Bull. Amer. Math. Soc. 36 (1999), 297-344
MSC (1991):
Primary 53C20
DOI:
https://doi.org/10.1090/S0273-0979-99-00787-9
Published electronically:
May 24, 1999
MathSciNet review:
1698926
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this article we survey some of the developments in Riemannian geometry. We place special emphasis on explaining the relationship between curvature and topology for Riemannian manifolds with lower curvature bounds.
- Uwe Abresch and Detlef Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), no. 2, 355â374. MR 1030656, DOI https://doi.org/10.1090/S0894-0347-1990-1030656-6
- C.B. Allendoerfer and A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943) 101-129.
- Michael T. Anderson, Short geodesics and gravitational instantons, J. Differential Geom. 31 (1990), no. 1, 265â275. MR 1030673
- Michael T. Anderson, Metrics of positive Ricci curvature with large diameter, Manuscripta Math. 68 (1990), no. 4, 405â415. MR 1068264, DOI https://doi.org/10.1007/BF02568774
- Michael T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), no. 2, 429â445. MR 1074481, DOI https://doi.org/10.1007/BF01233434
- Michael T. Anderson and Jeff Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature and $L^{n/2}$-norm of curvature bounded, Geom. Funct. Anal. 1 (1991), no. 3, 231â252. MR 1118730, DOI https://doi.org/10.1007/BF01896203
- Werner Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, BirkhÀuser Verlag, Basel, 1995. With an appendix by Misha Brin. MR 1377265
- Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, BirkhÀuser Boston, Inc., Boston, MA, 1985. MR 823981
- Pierre H. BĂ©rard, From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 371â406. MR 956595, DOI https://doi.org/10.1090/S0273-0979-1988-15679-0
- M. Berger, Riemannian geometry during the second half of the twentieth century, Jahresber. Deutsch. Math.-Verein. 100 (1998), no. 2, 45â208.
- Marcel Berger, VariĂ©tĂ©s riemanniennes Ă courbure positive, Bull. Soc. Math. France 87 (1959), 285â292 (French). MR 124018
- Marcel Berger, Les variĂ©tĂ©s riemanniennes $(1/4)$-pincĂ©es, C. R. Acad. Sci. Paris 250 (1960), 442â444 (French). MR 110997
- M. Berger, Les variĂ©tĂ©s Riemanniennes $(1/4)$-pincĂ©es, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 14 (1960), 161â170 (French). MR 140054
- M. Berger, On the diameter of some Riemannian manifolds, preprint, Berkeley, 1962.
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684
- Arthur L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93, Springer-Verlag, Berlin-New York, 1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. MR 496885
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- W. Blaschke, Vorlesungen ĂŒber Differentialgeometrie, Berlin-Heidelberg: Springer Verlag, first edition in 1921.
- S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776-797.
- O. Bonnet, Sur quelques propriétés des lignes géodésiques, C. R. Acad. Sci. Paris 40 (1855), 1311-1313.
- E. Calabi, An extension of E. Hopfâs maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56.
- Ălie Cartan, Geometry of Riemannian spaces, Lie Groups: History, Frontiers and Applications, Series A, XIII, Math Sci Press, Brookline, MA, 1983. Translated from the French and with a preface by James Glazebrook; With a preface, notes and appendices by Robert Hermann. MR 709421
- Isaac Chavel, Riemannian geometryâa modern introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, Cambridge, 1993. MR 1271141
- J. Cheeger, Comparison and finiteness theorems for Riemannian manifolds, Ph.D. thesis, Princeton University, 1967.
- Jeff Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61â74. MR 263092, DOI https://doi.org/10.2307/2373498
- Jeff Cheeger and Tobias H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2) 144 (1996), no. 1, 189â237. MR 1405949, DOI https://doi.org/10.2307/2118589
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406â480. MR 1484888
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 9. MR 0458335
- Jeff Cheeger, Critical points of distance functions and applications to geometry, Geometric topology: recent developments (Montecatini Terme, 1990) Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 1â38. MR 1168042, DOI https://doi.org/10.1007/BFb0094288
- Jeff Cheeger and Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119â128. MR 303460
- Jeff Cheeger and Detlef Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413â443. MR 309010, DOI https://doi.org/10.2307/1970819
- Jeff Cheeger, Kenji Fukaya, and Mikhael Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992), no. 2, 327â372. MR 1126118, DOI https://doi.org/10.1090/S0894-0347-1992-1126118-X
- S. S. Chern (ed.), Global differential geometry, MAA Studies in Mathematics, vol. 27, Mathematical Association of America, Washington, DC, 1989. MR 1013807
- Bennett Chow and Deane Yang, Rigidity of nonnegatively curved compact quaternionic-KĂ€hler manifolds, J. Differential Geom. 29 (1989), no. 2, 361â372. MR 982180
- S. Cohn-Vossen, KĂŒtzeste Wege und Totalkr ĂŒmming auf FlĂ€chen, Comp. Math. 2 (1935), 69-133.
- Tobias H. Colding, Ricci curvature and volume convergence, Ann. of Math. (2) 145 (1997), no. 3, 477â501. MR 1454700, DOI https://doi.org/10.2307/2951841
- Dennis M. DeTurck and Jerry L. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Sci. Ăcole Norm. Sup. (4) 14 (1981), no. 3, 249â260. MR 644518
- P. A. M. Dirac, General theory of relativity, Princeton Landmarks in Physics, Princeton University Press, Princeton, NJ, 1996. Reprint of the 1975 original. MR 1373868
- Peter Dombrowski, 150 years after Gaussâ âDisquisitiones generales circa superficies curvasâ, AstĂ©risque, vol. 62, SociĂ©tĂ© MathĂ©matique de France, Paris, 1979. With the original text of Gauss. MR 535996
- W. Dyck, Beitrage zur Analysis Situs I. Ein- und zwei-dimensionale Mannifaltigkeiten, Math. Ann. 32 (1888), 457-512.
- Patrick B. Eberlein, Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996. MR 1441541
- J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1â68. MR 495450, DOI https://doi.org/10.1112/blms/10.1.1
- J.-H. Eschenburg, Local convexity and nonnegative curvatureâGromovâs proof of the sphere theorem, Invent. Math. 84 (1986), no. 3, 507â522. MR 837525, DOI https://doi.org/10.1007/BF01388744
- Jost Eschenburg and Ernst Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom. 2 (1984), no. 2, 141â151. MR 777905, DOI https://doi.org/10.1007/BF01876506
- Kenji Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 143â238. MR 1145256, DOI https://doi.org/10.2969/aspm/01810143
- Sylvestre Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, AstĂ©risque 157-158 (1988), 191â216. Colloque Paul LĂ©vy sur les Processus Stochastiques (Palaiseau, 1987). MR 976219
- S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, Universitext, Springer-Verlag, Berlin, 1987. MR 909697
- S. Gallot and D. Meyer, OpĂ©rateur de courbure et laplacien des formes diffĂ©rentielles dâune variĂ©tĂ© riemannienne, J. Math. Pures Appl. (9) 54 (1975), no. 3, 259â284 (French). MR 454884
- W.-D. Geyer, ed., Jahresbericht der Deutschen Mathematiker-Vereinigung: JubilÀumstagung, 100 Jahre DMV, Bremen 1990, Stuttgart : B.G. Teubner, 1992.
- G. Gibbons and S. Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978) 430-432.
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
- R. E. Greene and H. Wu, Addendum to: âLipschitz convergence of Riemannian manifoldsâ [Pacific J. Math. 131 (1988), no. 1, 119â141; MR0917868 (89g:53063)], Pacific J. Math. 140 (1989), no. 2, 398. MR 1023793
- Robert Greene (ed.), Differential geometry: Riemannian geometry, Proceedings of Symposia in Pure Mathematics, vol. 54, American Mathematical Society, Providence, RI, 1993. MR 1216605
- D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im GroĂen, Lecture Notes in Mathematics, Vol. 55, Springer-Verlag, Berlin-New York, 1975 (German). Zweite Auflage. MR 0365399
- Detlef Gromoll and Wolfgang Meyer, On complete open manifolds of positive curvature, Ann. of Math. (2) 90 (1969), 75â90. MR 247590, DOI https://doi.org/10.2307/1970682
- M. Gromov, Almost flat manifolds, J. Differential Geometry 13 (1978), no. 2, 231â241. MR 540942
- M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978), no. 2, 223â230. MR 540941
- Michael Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179â195. MR 630949, DOI https://doi.org/10.1007/BF02566208
- Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
- M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), no. 1, 1â12. MR 892185, DOI https://doi.org/10.1007/BF01404671
- Karsten Grove, Hermann Karcher, and Ernst A. Ruh, Group actions and curvature, Invent. Math. 23 (1974), 31â48. MR 385750, DOI https://doi.org/10.1007/BF01405201
- Karsten Grove and Peter Petersen (eds.), Comparison geometry, Mathematical Sciences Research Institute Publications, vol. 30, Cambridge University Press, Cambridge, 1997. Papers from the Special Year in Differential Geometry held in Berkeley, CA, 1993â94. MR 1452865
- Karsten Grove and Peter Petersen V, Bounding homotopy types by geometry, Ann. of Math. (2) 128 (1988), no. 1, 195â206. MR 951512, DOI https://doi.org/10.2307/1971439
- Karsten Grove, Peter Petersen V, and Jyh Yang Wu, Geometric finiteness theorems via controlled topology, Invent. Math. 99 (1990), no. 1, 205â213. MR 1029396, DOI https://doi.org/10.1007/BF01234418
- Karsten Grove and Katsuhiro Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), no. 2, 201â211. MR 500705, DOI https://doi.org/10.2307/1971164
- J. Hadamard, Les surfaces à courbures oppos ées, J. Math. Pures Appl. 4 (1889), 27-73.
- Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7â136. MR 1375255
- Richard S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1â92. MR 1456308, DOI https://doi.org/10.4310/CAG.1997.v5.n1.a1
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1. MR 0424186
- Ernst Heintze and Hermann Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Ăcole Norm. Sup. (4) 11 (1978), no. 4, 451â470. MR 533065
- W.V.D. Hodge, The existence theorem for harmonic integrals, Proc. London Math. Soc. 41 (1936), 483-496.
- H. Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95 (1926), 313-339.
- H. Hopf, Ăber die Curvatura integra geschlossener HyperflĂ€chen, Math. Ann. 95 (1926), 340-367.
- H. Hopf and W. Rinow, Ăber den Begriff der vollstĂ€ndigen differential-geometrischen FlĂ€chen, Comment. Math. Helv. 3 (1931), 209-225.
- JĂŒrgen Jost and Hermann Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken fĂŒr harmonische Abbildungen, Manuscripta Math. 40 (1982), no. 1, 27â77 (German, with English summary). MR 679120, DOI https://doi.org/10.1007/BF01168235
- Atsushi Kasue, A convergence theorem for Riemannian manifolds and some applications, Nagoya Math. J. 114 (1989), 21â51. MR 1001487, DOI https://doi.org/10.1017/S0027763000001380
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah; Annals of Mathematics Studies, No. 88. MR 0645390
- W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. (2) 69 (1959), 654â666. MR 105709, DOI https://doi.org/10.2307/1970029
- Wilhelm Klingenberg, Ăber Riemannsche Mannigfaltigkeiten mit positiver KrĂŒmmung, Comment. Math. Helv. 35 (1961), 47â54 (German). MR 139120, DOI https://doi.org/10.1007/BF02567004
- Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
- L. Kronecker, Ăber Systeme von Funktionen mehrer Variablen, Monatsberichte Berlin Akad. (1869), 159-193 and 688-698.
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- C. Lanczos, Ein vereinfachendes Koordinatensystem f ĂŒr die Einsteinschen Gravitationsgleichungen, Phys. Z. 23 (1922) 537-539.
- John M. Lee, Riemannian manifolds, Graduate Texts in Mathematics, vol. 176, Springer-Verlag, New York, 1997. An introduction to curvature. MR 1468735
- T. Levi-Civita, The absolute differential calculus, London and Glasgow: Blackie and Son, first Italian ed. 1923, English ed. in 1926, and revised ed. in 1961.
- André Lichnerowicz, Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958 (French). MR 0124009
- AndrĂ© Lichnerowicz, Propagateurs et commutateurs en relativitĂ© gĂ©nĂ©rale, Inst. Hautes Ătudes Sci. Publ. Math. 10 (1961), 56 (French). MR 157736
- AndrĂ© Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7â9 (French). MR 156292
- H. v. Mangoldt, Ăber diejenigen Punkte aur positiv gekrummten FlĂ€chen, welche die Eigenschaft haben, dass die von ihnen ausgehenden geodĂ€tischen Linien nie aufhören, kĂŒrzeste Linien zu sien, J. Reine Angew. Math. 91 (1881), 23-52.
- Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199â227. MR 924677, DOI https://doi.org/10.2307/1971420
- Mario J. Micallef and McKenzie Y. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649â672. MR 1253619, DOI https://doi.org/10.1215/S0012-7094-93-07224-9
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331
- Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, Calif., 1973. MR 0418833
- Ngaiming Mok, The uniformization theorem for compact KĂ€hler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988), no. 2, 179â214. MR 925119
- John W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. MR 1367507
- M. Morse, Relations between the critical points of a real analytic function of n independent variables, Trans. Amer. Math. Soc. 27 (1925) 345-396.
- M. Morse, The calculus of variations in the large, AMS Coll. Publ. 18, New York, 1934.
- S.B. Myers, Riemannian manifolds in the large, Duke Math. J. 1 (1935), 39-49.
- S.B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941) 401-404.
- S.B. Myers and N. Steenrod, The group of isometries of a Riemannian manifold, Ann. Math. 40 (1939), 400-416.
- Philippe Nabonnand, Contribution Ă lâhistoire de la thĂ©orie des gĂ©odĂ©siques au XIXe siĂšcle, Rev. Histoire Math. 1 (1995), no. 2, 159â200 (French, with English and French summaries). MR 1363929
- I. G. Nikolaev, Parallel translation and smoothness of the metric of spaces with bounded curvature, Dokl. Akad. Nauk SSSR 250 (1980), no. 5, 1056â1058 (Russian). MR 561573
- Barrett OâNeill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Yukio Otsu, On manifolds of positive Ricci curvature with large diameter, Math. Z. 206 (1991), no. 2, 255â264. MR 1091941, DOI https://doi.org/10.1007/BF02571341
- Murad Ăzaydin and Gerard Walschap, Vector bundles with no soul, Proc. Amer. Math. Soc. 120 (1994), no. 2, 565â567. MR 1162091, DOI https://doi.org/10.1090/S0002-9939-1994-1162091-X
- Roger Penrose, Techniques of differential topology in relativity, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1972. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7. MR 0469146
- G. Perelman, Proof of the soul conjecture of Cheeger and Gromoll, J. Differential Geom. 40 (1994), no. 1, 209â212. MR 1285534
- G. Perelâman, Alexandrovâs spaces with curvatures bounded from below II, preprint.
- G. Perelman, Manifolds of positive Ricci curvature with almost maximal volume, J. Amer. Math. Soc. 7 (1994), no. 2, 299â305. MR 1231690, DOI https://doi.org/10.1090/S0894-0347-1994-1231690-7
- Stefan Peters, Cheegerâs finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. Reine Angew. Math. 349 (1984), 77â82. MR 743966, DOI https://doi.org/10.1515/crll.1984.349.77
- Stefan Peters, Convergence of Riemannian manifolds, Compositio Math. 62 (1987), no. 1, 3â16. MR 892147
- Peter Petersen, Riemannian geometry, Graduate Texts in Mathematics, vol. 171, Springer-Verlag, New York, 1998. MR 1480173
- P. Petersen, S. D. Shteingold, and G. Wei, Comparison geometry with integral curvature bounds, Geom. Funct. Anal. 7 (1997), no. 6, 1011â1030. MR 1487752, DOI https://doi.org/10.1007/s000390050035
- P. Petersen and C. Sprouse, Integral curvature bounds, distance estimates and applications, J. Diff. Geom. 50 (1998), 269â298.
- P. Petersen and G. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal. 7 (1997), no. 6, 1031â1045. MR 1487753, DOI https://doi.org/10.1007/s000390050036
- P. Petersen and G. Wei, Geometry and analysis on manifolds with integral Ricci curvature bounds, preprint from UCLA. To appear in Trans. Amer. Math. Soc.
- P. Petersen, G. Wei, and R. Ye, Controlled geometry via smoothing, to appear in Comm. Math. Helv.
- A. Preissmann, Quelques propriétés globales des espaces de Riemann, Comment. Math. Helv. 15 (1943), 175-216.
- H.E. Rauch, A contribution to differential geometry in the large, Ann. Math. 54 (1951), 38-55.
- Georges de Rham, Differentiable manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 266, Springer-Verlag, Berlin, 1984. Forms, currents, harmonic forms; Translated from the French by F. R. Smith; With an introduction by S. S. Chern. MR 760450
- B. Riemann, Ăber die Hypothesen welche der Geometrie zu Grunde liegen, Habilitationschrift 1854; Gött. Abh. 13, 1868; Gesamm. Werke, 2nd ed. Leipzig, 1892. Edited with comments by H. Weyl, Berlin, 1919 and revised in 1923.
- Xiaochun Rong, The almost cyclicity of the fundamental groups of positively curved manifolds, Invent. Math. 126 (1996), no. 1, 47â64. MR 1408555, DOI https://doi.org/10.1007/s002220050088
- Xiaochun Rong, A Bochner theorem and applications, Duke Math. J. 91 (1998), no. 2, 381â392. MR 1600598, DOI https://doi.org/10.1215/S0012-7094-98-09116-5
- Ernst A. Ruh, Almost flat manifolds, J. Differential Geometry 17 (1982), no. 1, 1â14. MR 658470
- I.J. Schoenberg, Some applications of the calculus of variations to Riemannian geometry, Ann. Math. 33 (1932) 485-495.
- K. Shiohama, T. Sakai, and T. Sunada (eds.), Curvature and topology of Riemannian manifolds, Lecture Notes in Mathematics, vol. 1201, Springer-Verlag, Berlin, 1986. MR 859572
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
- J. J. Stoker, Differential geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1969 original; A Wiley-Interscience Publication. MR 1013365
- Stephan Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 136 (1992), no. 3, 511â540. MR 1189863, DOI https://doi.org/10.2307/2946598
- J.L. Synge, The first and second variations of the length-integral in Riemann spaces, Proc. London Math. Soc. 25 (1926), 247-264.
- J.L. Synge, On the neighborhood of a geodesic in Riemannian space, Duke Math. J. 1 (1935), 527-537.
- J.L. Synge, On the connectivity of spaces of positive curvature, Quart. J. Math. 7 (1936), 316-320.
- Shun-ichi Tachibana, A theorem on Riemannian manifolds of positive curvature operator, Proc. Japan Acad. 50 (1974), 301â302. MR 365415
- V. A. Toponogov, Riemann spaces with curvature bounded below, Uspehi Mat. Nauk 14 (1959), no. 1 (85), 87â130 (Russian). MR 0103510
- V. A. Toponogov, Dependence between curvature and topological structure of Riemann spaces of even dimension, Soviet Math. Dokl. 1 (1961), 943â945. MR 0140052
- V. A. Toponogov, The metric structure of Riemannian spaces of non-negative curvature containing straight lines, Sibirsk. Mat. Ćœ. 5 (1964), 1358â1369 (Russian). MR 0185551
- Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. MR 722297
- Alan Weinstein, On the homotopy type of positively-pinched manifolds, Arch. Math. (Basel) 18 (1967), 523â524. MR 220311, DOI https://doi.org/10.1007/BF01899493
- R. Weitzenbock, Invariantentheorie, Groningen: Nordhoff, 1923.
- Frederick Wilhelm, On intermediate Ricci curvature and fundamental groups, Illinois J. Math. 41 (1997), no. 3, 488â494. MR 1458186
- Hung Hsi Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, iâxii and 289â538. MR 1079031
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 53C20
Retrieve articles in all journals with MSC (1991): 53C20
Additional Information
Peter Petersen
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095-1555
Email:
petersen@math.ucla.edu
Keywords:
Riemannian geometry
Received by editor(s):
November 20, 1997
Received by editor(s) in revised form:
October 20, 1998
Published electronically:
May 24, 1999
Additional Notes:
Supported in part by the NSF
Article copyright:
© Copyright 1999
American Mathematical Society