Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Anthony W. Knapp
Title: Lie groups: Beyond an introduction
Additional book information: Birkhäuser, Boston, MA, 1996, xv+604 pp., ISBN 3-7643-3926-8, $49.50$

References [Enhancements On Off] (What's this?)

  • J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
  • Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0
  • [3]
    É. Cartan, La Théorie des Groupes Finis et Continus et l'Analysis Situs, Gauthier-Villars, Paris, 1930.
  • P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
  • Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
  • [7]
    L. Pontrjagin, Topological Groups, Princeton University Press, Princeton, New Jersey, 1939, translated by E. Lehmer.
  • Jean-Pierre Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York-Amsterdam, 1966 (French). MR 0215886
  • V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR 746308, DOI 10.1007/978-1-4612-1126-6
  • Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
  • Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
  • D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097

  • Review Information:

    Reviewer: David A. Vogan, Jr.
    Affiliation: Massachusetts Institute of Technology
    Journal: Bull. Amer. Math. Soc. 36 (1999), 493-498
    Published electronically: June 21, 1999
    Review copyright: © Copyright 1999 American Mathematical Society