Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Roe Goodman and Nolan R. Wallach
Title: Representations and invariants of the classical groups
Additional book information: Cambridge Univ. Press, Cambridge, 1998, xvi + 685 pp., ISBN 0-521-58273-3, $100.00$, hardcover; ISBN 0-521-66348-2, $39.95$, paperback

References [Enhancements On Off] (What's this?)

  • L. C. Biedenharn and J. D. Louck, Angular momentum in quantum physics, Encyclopedia of Mathematics and its Applications, vol. 8, Addison-Wesley Publishing Co., Reading, Mass., 1981. Theory and application; With a foreword by Peter A. Carruthers. MR 635121
  • Hermann Boerner, Representations of groups. With special consideration for the needs of modern physics, Second English edition, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1970. Translated from the German by P. G. Murphy in cooperation with J. Mayer-Kalkschmidt and P. Carr. MR 0272911
  • Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
  • Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0
  • 5.
    A. Cayley, A Second Memoir upon Quantics, CLXVI (1856) Philosophical Transactions of the Royal Society of London [Collected Works, Vol. II (1889), Cambridge at the University Press (141), pp. 533-538].
    A. Clebsch and F. Lindemann, Vorlesungen über Geometrie, (1876-1891) Leipzig.
  • Jacques Dixmier, Quelques aspects de la théorie des invariants, Gaz. Math. 43 (1990), 39–64 (French). Translated by J.-R. Billuard. MR 1035388
  • J. Dixmier and D. Lazard, Le nombre minimum d’invariants fondamentaux pour les formes binaires de degré $7$, Portugal. Math. 43 (1985/86), no. 3, 377–392 (French, with English summary). MR 886462
  • 9.
    E.B. Elliott, An Introduction to the Algebra of Quantics, 1895, Oxford at the Clarendon Press.
  • William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
  • Hans Freudenthal and H. de Vries, Linear Lie groups, Pure and Applied Mathematics, Vol. 35, Academic Press, New York-London, 1969. MR 0260926
  • 12.
    F. von Gall, Das vollständige Formensystem der binären Formen 7ten Ordnung, 31 (1888) Math. Ann., 318-336.
    O.E. Glenn, A Treatise on the Theory of Invariants, (1915) Ginn and Company, Boston.
  • Paul Gordan, Vorlesungen über Invariantentheorie, 2nd ed., Chelsea Publishing Co., New York, 1987 (German). Erster Band: Determinanten. [Vol. I: Determinants]; Zweiter Band: Binäre Formen. [Vol. II: Binary forms]; Edited by Georg Kerschensteiner. MR 917266
  • 15.
    J.H. Grace and A. Young, The Algebra of Invariants, (1903) Cambridge University Press, (Reprinted Chelsea Publishing Company, Bronx, New York).
  • Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • Roger Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182. MR 1321638
  • Roger E. Howe, The first fundamental theorem of invariant theory and spherical subgroups, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 333–346. MR 1278717, DOI 10.4310/pamq.2005.v1.n1.a11
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
  • Nathan Jacobson, Lie algebras, Dover Publications, Inc., New York, 1979. Republication of the 1962 original. MR 559927
  • David Mumford and John Fogarty, Geometric invariant theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR 719371, DOI 10.1007/978-3-642-96676-7
  • Peter J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995. MR 1337276, DOI 10.1017/CBO9780511609565
  • 23.
    G. Salmon, A Treatise on Higher Plane Curves, 3rd Edition (1889), Hodges, Foster and Figgis, Dublin.
    G. Salmon, Lessons Introductory to the Modern Higher Algebra, 3rd Edition, (1885), Hodges, Foster and Figgis, Dublin.
  • Issai Schur, Vorlesungen über Invariantentheorie, Die Grundlehren der mathematischen Wissenschaften, Band 143, Springer-Verlag, Berlin-New York, 1968 (German). Bearbeitet und herausgegeben von Helmut Grunsky. MR 0229674
  • Tetsuji Shioda, On the graded ring of invariants of binary octavics, Amer. J. Math. 89 (1967), 1022–1046. MR 220738, DOI 10.2307/2373415
  • Jacques Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Springer-Verlag, Berlin-New York, 1967 (German). MR 0218489
  • 28.
    H.W. Turnbull, The Theory of Determinants, Matrices and Invariants, (1929) Blackie (London, Glasgow).
  • V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0376938
  • Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Pure and Applied Mathematics, No. 19, Marcel Dekker, Inc., New York, 1973. MR 0498996
  • T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
  • Alfred Young, The collected papers of Alfred Young (1873–1940), Mathematical Expositions, No. 21, University of Toronto Press, Toronto, Ont.-Buffalo, N.Y., 1977. With a foreword by G. de B. Robinson and a biography by H. W. Turnbull. MR 0439548
  • D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097

  • Review Information:

    Reviewer: Jacob Towber
    Affiliation: De Paul University
    Journal: Bull. Amer. Math. Soc. 36 (1999), 533-538
    Published electronically: July 28, 1999
    Review copyright: © Copyright 1999 American Mathematical Society