Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Akio Kawauchi
Title: A survey of knot theory
Additional book information: Birkhäuser-Verlag, Basel, Boston, and Berlin, 1996, xxi+420 pp., ISBN 3-7643-5124-1, $89.50$

References [Enhancements On Off] (What's this?)

J. W. Alexander, Note on Riemann spaces. Bull. Amer. Math. Soc., Vol. 26 (1920), pp. 370-372.
J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. USA, Vol. 9 (1923), pp. 539-549.
J.W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc., Vol. 30 (1928), pp. 275-306.
E. Artin, Theorie der zopfe, Hamburg Abh., Vol. 4 (1926), pp. 539-549.
C. W. Ashley, The Ashley Book of Knots, Doubleday and Co. (1944).
  • Marcia Ascher and Robert Ascher, Code of the quipu, University of Michigan Press, Ann Arbor, Mich., 1981. A study in media, mathematics, and culture. MR 646063
  • Michael Atiyah, The geometry and physics of knots, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1990. MR 1078014, DOI 10.1017/CBO9780511623868
  • Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
  • A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 39–53. MR 520521
  • J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
  • J. H. Conway and C. McA. Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1983), no. 4, 445–453. MR 722061, DOI 10.1002/jgt.3190070410
  • Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Ginn and Company, Boston, Mass., 1963. Based upon lectures given at Haverford College under the Philips Lecture Program. MR 0146828
  • 13.
    J. Elffers and M. Schuyt, Cat's Cradle and Other String Figures, Penguin Books (1978).
    L. Euler, The Seven Bridges of Konigsburg, Presentation to the Russian Academy at St. Petersburg (1735).
  • Roger Fenn and Colin Rourke, On Kirby’s calculus of links, Topology 18 (1979), no. 1, 1–15. MR 528232, DOI 10.1016/0040-9383(79)90010-7
  • R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099
  • Ralph H. Fox and John W. Milnor, Singularities of $2$-spheres in $4$-space and cobordism of knots, Osaka Math. J. 3 (1966), 257–267. MR 211392
  • 18.
    K. Fulves, Self-Working Rope Magic, Dover Pub. (1990).
    K. F. Gauss, Gauss Werke - 1833, K$\ddot{o}$niglichen Gesellschaft der Wissenshaften zu G$\ddot{o}$ttingen (1877). p. 605.
  • Cole A. Giller, A family of links and the Conway calculus, Trans. Amer. Math. Soc. 270 (1982), no. 1, 75–109. MR 642331, DOI 10.1090/S0002-9947-1982-0642331-X
  • Richard Hartley, The Conway potential function for links, Comment. Math. Helv. 58 (1983), no. 3, 365–378. MR 727708, DOI 10.1007/BF02564642
  • Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
  • Louis H. Kauffman, Branched coverings, open books and knot periodicity, Topology 13 (1974), 143–160. MR 375337, DOI 10.1016/0040-9383(74)90005-6
  • Louis H. Kauffman and Walter D. Neumann, Products of knots, branched fibrations and sums of singularities, Topology 16 (1977), no. 4, 369–393. MR 488073, DOI 10.1016/0040-9383(77)90042-8
  • Louis H. Kauffman, The Conway polynomial, Topology 20 (1981), no. 1, 101–108. MR 592573, DOI 10.1016/0040-9383(81)90017-3
  • Louis H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30, Princeton University Press, Princeton, NJ, 1983. MR 712133
  • Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
  • Louis H. Kauffman, On knots, Annals of Mathematics Studies, vol. 115, Princeton University Press, Princeton, NJ, 1987. MR 907872
  • Louis H. Kauffman (ed.), Knots and applications, Series on Knots and Everything, vol. 6, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. MR 1364187, DOI 10.1142/9789812796189
  • Robion Kirby, A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, DOI 10.1007/BF01406222
  • J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR 246314, DOI 10.1007/BF02564525
  • 32.
    A. A. Markov, $\ddot{\textup{U}}$ber die freie aquivalenz geschlossener zopfe, Recueil Mathematique Moscou, Vol. 1, pp. 73-78.
  • William Menasco and Morwen Thistlethwaite, The classification of alternating links, Ann. of Math. (2) 138 (1993), no. 1, 113–171. MR 1230928, DOI 10.2307/2946636
  • Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
  • John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
  • 36.
    K. Reidemeister, Knotentheorie, (1932) Ergeben. Math. Grenzgeb., Bd. 1; Berlin: Springer Verlag.
  • N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
  • 38.
    A. Stasiak, V. Katritch and L. H. Kauffman, Ideal Knots, (1998), Vol. 19 in Series on K&E, World Sci. Pub.
    H. Seifert, Über das geschlecht von knoten, Math. Ann., Vol. 110, (1934), pp. 539-549.
  • Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772

  • Review Information:

    Reviewer: Louis H. Kauffman
    Affiliation: University of Illinois at Chicago
    Journal: Bull. Amer. Math. Soc. 36 (1999), 539-549
    Published electronically: July 29, 1999
    Review copyright: © Copyright 1999 American Mathematical Society