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MERITS AND DEMERITS OF THE ORBIT METHOD

A. A. KIRILLOV

Abstract. This survey is the expanded version of my talk at the AMS meet-
ing in April 1997. I explain to non-experts how to use the orbit method, discuss
its strong and weak points and advertise some open problems.
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0. Introduction

The idea behind the orbit method is the unification of harmonic analysis with
symplectic geometry (and it can also be considered as a part of the more general
idea of the unification of mathematics and physics). In fact, this is a post factum
formulation. Historically, the orbit method was proposed in [K1] for the descrip-
tion of the unitary dual (i.e. the set of equivalence classes of unitary irreducible
representations) of nilpotent Lie groups. It turned out that not only this problem
but all other principal questions of representation theory—topological structure
of the unitary dual, explicit description of the restriction and induction functors,
character formulae, etc.—can be naturally answered in terms of coadjoint orbits.
Moreover, the answers make sense for general Lie groups (and even beyond), though
sometimes with more or less evident corrections. I mentioned in [K1] the possible
applications of the orbit method to other types of Lie groups,1 but the realization
of this program took much time and is still not accomplished despite the efforts of
many authors.2

As usual, the faults of the method are continuations of its advantages. We quote
briefly the most important ones.

1Unfortunately, this remark was omitted in the exposition of the article at the Bourbaki
Seminar.

2Of course, I cannot list here all those who contributed to the development of the orbit method,
but I certainly should mention the outstanding role of Bertram Kostant and Michel Duflo.
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Merits versus Demerits

1. Universality: the method works for 1. The recipes are not accurately
Lie groups of any type over any field. and precisely formulated.

2. The rules are visual, easy to 2. Sometimes they are wrong and
memorize and illustrate by a picture. need corrections or modifications.

3. The method explains some facts 3. It could be difficult to transform
which otherwise look mysterious. this explanation into a rigorous proof.

4. It provides a great number of 4. Most completely integrable
symplectic manifolds and Poisson dynamical systems were discovered
commuting families of functions. earlier by other methods.

5. The method introduces two new 5. The description of coadjoint orbits
fundamental notions: coadjoint and their structure is sometimes not
orbits and moment maps. an easy problem.

The goals of this article are: first, to describe the essence of the orbit method
for non-experts; second, to attract the younger generation of mathematicians to
some old and still unsolved problems in representation theory where I believe the
orbit method could be helpful. The level of exposition varies in different parts of
the article so that both experts and beginners can find something interesting and
useful. The interested reader can find most of the unexplained notions, terms and
constructions elucidated in my book [K2] or in the survey [K3].

Of course, the bibliography is not complete. The AMS catalog of mathematical
articles contains today about 500 papers where coadjoint orbits are mentioned and
more than 2,000 papers on geometric quantization (which is the physical counter-
part of the orbit method), so I included only papers quoted in the text.

In conclusion I want to express the hope that the orbit method becomes for my
readers a source of thoughts and inspirations as it has been for me during the last
thirty-five years.

1. Geometry of coadjoint orbits

The main new object which appeared in the orbit method for the first time
is the notion of a coadjoint orbit, i.e. an orbit of a Lie group G in the space
g∗ dual to g = Lie(G) where G acts via the coadjoint representation. In this
section we consider the geometry of coadjoint orbits and discuss the problem of
their classification.

1.1. Coadjoint representation. Let G be a Lie group, i.e. a smooth manifold
endowed with a multiplication law which is a smooth map G×G→ G satisfying the
group axioms. It is useful to have in mind the following example: G is a subgroup
and at the same time a smooth submanifold of GL(n, R), the group of all invertible
n× n matrices with real entries. Such groups G we shall call matrix groups.3

Let g = Lie(G) be the tangent space Te(G) to G at the unit point e. The group
G acts on itself by inner automorphisms: A(g) : x 7→ g xg−1. The point e is a
fixed point of this action, and we get the derived map A∗(g) : g→ g which is usually
denoted by Ad(g). The map g 7→ Ad(g) is called the adjoint representation of

3This example is almost universal: any Lie group is locally isomorphic to a matrix group.
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G. In the matrix group case g is a subspace of Matn(R), the space of all n× n real
matrices, and the adjoint representation is simply matrix conjugation:

Ad(g)X = g Xg−1, X ∈ g, g ∈ G.
Consider now the dual linear space to g usually denoted by g∗. In the matrix case
we can use the fact that Matn(R) has a bilinear form 〈A,B〉 = tr(AB) which is
invariant under conjugation. So, the space g∗ dual to the subspace g ⊂ Matn(R)
can be identified with the quotient space Matn(R)/g⊥ where the sign ⊥ means the
orthogonal complement with respect to 〈 , 〉. In practice the latter space is often
identified with some subspace V ⊂Matn(R) which is transverse to g⊥ and has the
complementary dimension. Let p be the projection of Matn(R) on V parallel to g⊥.
Then the coadjoint representationK, which is dual to the adjoint representation
defined above, can be written in the simple form

K(g) : F 7→ p(gFg−1).(1.1.1)

Remark. If V were invariant under Ad(G) (as we can assume for a semi-simple or
reductive g), we could omit the projection p in (1.1.1).

Example 1. LetG be the group of upper triangular matrices fromGL(n,R). Then
g consists of all upper triangular matrices from Matn(R), and we can take for V
the space of all lower triangular matrices. The projection p in this case sends any
matrix to its “lower part” (i.e. replaces all entries above the main diagonal by
zeros).

Example 2. Let G = SO(n,R). Then g consists of all skew-symmetric matrices
from Matn(R). Here we can put V = g and omit the projection p in (1.1.1). The
same is true for any reductive subgroup of GL(n,R).

We also give the infinitesimal version of the coadjoint action:

〈K∗(X)F, Y 〉 = 〈F, −ad(X) Y 〉 = 〈F, [Y,X ]〉
which for matrix groups takes the form

K∗(X)F = p([X,F ]), X ∈ g, F ∈ g∗.(1.1.2)

1.2. Symplectic structure. The first approach. The most remarkable fea-
ture of the coadjoint representation is the fact that all coadjoint orbits possess a
canonical G-invariant symplectic structure. This means that on each orbit Ω ⊂ g∗

there is a canonically defined closed non-degenerate G-invariant differential 2-form
σ. Here we give a direct construction of this form.

First, we observe that an invariant differential form on a homogeneous manifold
is uniquely determined by its value at a single point. Note that this value should be
invariant under the action of the stabilizer of the point and subjected to no other
restrictions. Thus, it is enough to specify the value of σ at some point F ∈ Ω.

Remark. For some groups (especially infinite dimensional; see 5.3) one can find an
explicit formula for σ only at a specially chosen point F0 of a given orbit. This
defines σ uniquely but not explicitly.

Now let Stab(F ) denote the stabilizer of F ∈ Ω and stab(F ) be the Lie algebra
of Stab(F ). Consider the exact sequence

0→ stab(F )→ g→ TF (Ω)→ 0
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which comes from the action of G on Ω. It allows us to identify the tangent space
TF (Ω) with the quotient of g by stab(F ). But there is a natural skew symmetric
bilinear form on g whose kernel is exactly stab(F ), namely

BF (X,Y ) = 〈F , [X,Y ]〉.(1.2.1)

Indeed,

ker BF = {X ∈ g| BF (X,Y ) = 0 ∀ Y ∈ g}
= {X ∈ g| 〈K∗(X)F , Y 〉 = 0 ∀ Y ∈ g} = stab(F ).

So, we can define the value σF of σ at the point F by

σF (K∗(X)F, K∗(Y )F ) = BF (X, Y ).(1.2.2)

The non-degeneracy and G-invariance of the constructed form σ follow immediately
from the definition. We could check directly that this form is closed by some more
involved (though simple) computations (see e.g. [K2]), but instead we use the
following observation.

For F ∈ Ω let pF denote the submersion G→ Ω : g 7→ K(g)F . Then p∗F (σ) is a
left invariant 2-form on G. It turns out that this form is not only closed but exact.
Namely, one can check that p∗F (σ) is the exterior derivative of the left invariant
1-form

θF = 〈F , g−1dg〉.(1.2.3)

Since pF is a submersion, p∗F is injective. But p∗Fdσ = dp∗F (σ) = d2θF = 0. Hence,
σ is closed.

In general θF cannot be written as p∗F (φ) for some 1-form φ on Ω, so we can’t
claim that σ is exact.

Recall that a closed 2-form on a smooth orientable manifold is exact iff its integral
over any 2-cycle vanishes. For future use we make the following

Definition. A coadjoint orbit Ω is integral if the canonical symplectic form σ has
the property ∫

C

σ ∈ Z for every geometric 2-cycle C in Ω.(1.2.4)

The meaning of the integrality condition is revealed by the following

Proposition 1. The following are equivalent:
(i) An orbit Ω ⊂ g∗ is integral.
(ii) There exists a line bundle over Ω with a Hermitian connection ∇ such that

curv(∇) = 2πiσ.(1.2.5)

(iii) For any F ∈ Ω the 1-dimensional representation of the Lie algebra stab(F )
given by

X 7→ 2πi〈F, X〉
can be integrated to a unitary 1-dimensional representation of the Lie group
Stab 0(F ), the connected component of the identity in Stab (F ).
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1.3. Symplectic structure. The second approach. We now discuss another
way to introduce the canonical symplectic structure on coadjoint orbits. It is based
on the notion of Poisson manifold, which is by definition a smooth manifold M
endowed with a bivector field c = cij∂i∂j such that the Poisson brackets

{f1, f2} = cij∂if1∂jf2(1.3.1)

define a Lie algebra structure on C∞(M).4 Any symplectic manifold (M,σ) has a
canonical Poisson structure c such that in some (and hence in every) local coordinate
system the matrices ‖ cij ‖ and ‖ σij ‖ are reciprocal to each other.

The main structure theorem about Poisson manifolds (see, e.g. [K3]) claims that
any such manifold (M, c) can be uniquely foliated by its symplectic leaves, i.e.
represented as the disjoint union of submanifolds {Mα}α∈A such that the bivector
c admits a restriction cα on each Mα and (Mα, cα) is a symplectic manifold for
each α ∈ A. In other words, the value of {f1, f2} at the point m ∈ Mα is equal to
{f1|Mα , f2|Mα}α (m) where {· , ·}α is the Poisson bracket on Mα.

Now let g be a Lie algebra with a basis {Xi}1≤i≤n and structure constants ckij .
On the space g∗, dual to g, with coordinates given by the basis above, the bivector

c = ckijXk∂
i ∧ ∂j(1.3.2)

defines a Poisson structure. (Indeed, to check the Jacobi identity it is sufficient to
consider the Poisson brackets of linear functions on g∗. But it is clear from (1.3.1)
that

{Xi, Xj} = ckijXk

i.e. the linear functions form a Lie algebra isomorphic to g.)5

Proposition 2. The symplectic leaves of the Poisson manifold (g∗, c) are exactly
the coadjoint orbits.

For the proof see [K3] (or check it directly).

1.4. Coadjoint invariant polynomials. In this section we discuss the classifi-
cation problem for coadjoint orbits. The first step in the solution of this problem is
to find all invariants of the group action. We start with polynomial and rational
invariants. It is known that for algebraic actions of complex algebraic groups on
affine algebraic manifolds there are enough rational invariants to separate the orbits
in the following sense:

The common level set of all rational invariants consists of a finite number of
orbits, and a generic level is just one orbit.

Moreover, each rational invariant can be written in the form R = P
Q where P

and Q are relatively invariant polynomials of the same weight (i.e. there is a
homomorphism λ : G→ C× such that both P and Q under the action of a g ∈ G are
multiplied by λ(g)). In particular, for nilpotent and semisimple groups which have
no non-trivial rational homomorphisms to C×, all rational invariants are quotients
of polynomial invariants.

For real algebraic groups the common level sets of invariants could be split into
finitely many connected components which are not separated by rational invariants.

4This imposes on c the condition [c, c] = 0 where [ , ] is the so-called Schouten bracket operation
on polyvector fields.

5As A. Weinstein clarified recently, this Poisson structure was known already to Sophus Lie.
Being out of use for a long time, it was rediscovered by F. A. Berezin in 1968.
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(Compare with the geometry of quadrics in a real affine plane. The two branches
of a hyperbola provide the most visual example.)

The general scheme for the construction of invariants of a group G acting on
a space X is the following. Suppose we can construct a subset S ⊂ X whose
intersection with (almost) every orbit is a unique point. Any invariant function
on X defines by restriction a function on S. Conversely, any function on S can
be canonically extended to a G-invariant function defined (almost everywhere) on
X . If S is a smooth (resp. algebraic, rational, etc.) submanifold, then we get the
information about smooth (resp. algebraic, rational, etc.) invariants.

Warning. While restriction to S usually preserves the nice properties of invariants,
the extension procedure does not. E.g., the extension of a polynomial function on
S could only be rational on X (see Example 4 below).

Example 3. Let G = GL(n,R) act on X = Matn(R) by conjugation. Let S be
the affine subspace consisting of matrices of the form

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
cn cn−1 cn−2 · · · c1

 .

One can check that S intersects almost all conjugacy classes in exactly one point.6

It follows that all polynomial invariants form an algebra R[c1, c2, · · · , cn]. Indeed,
every polynomial invariant restricted to S becomes a polynomial in c1, c2, · · · , cn.
On the other hand, all ci’s admit extensions as invariant polynomials on Matn(R)
– they coincide up to sign with the coefficients of the characteristic polynomial
PA(λ) = det(A− λ · 1).

There is a nice generalization of this example to all semisimple Lie algebras due
to B. Kostant.

Example 4. Let N+ (resp. N−) be the subgroup of strictly upper (resp. lower)
triangular matrices from GL(n,R). The groupG = N+×N− acts onX = Matn(R):

g = (n+, n−) : A 7→ n+ ·A · n−1
− .

Take the subspace of diagonal matrices as S. Then almost all G-orbits intersect S
in a single point. But now, polynomial functions on S extend to rational invariant
functions on X . Namely, let ∆k(A) denote the principal minor of order k for a
matrix A. It is a G-invariant polynomial on X , and the k-th diagonal element on
S extends as a rational function ∆k(A)/∆k−1(A) on X .

In the case of the coadjoint action the polynomial and rational invariants play
an important role in representation theory due to their connection with so-called
infinitesimal characters (see the next section). Here we remark only that smooth
K(G)-invariants on g∗ form the center of the Lie algebra C∞(g∗) with respect to
Poisson brackets. Indeed, this center consists of functions f such that

ckijXk∂
if = 0 ∀j ∈ [1, n].

But this means exactly that f is annihilated by all Lie vector fields K∗(Xj),
1 ≤ j ≤ n, hence is K(G)-invariant.

6Geometrically this means that for almost all operators A ∈ Matn(R) there exists a cyclic
vector ξ, i.e. such that the vectors ξ, Aξ,A2ξ, · · · , An−1ξ form a basis in Rn.
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1.5. The moment map and the universal property of coadjoint orbits.
We have seen that any coadjoint orbit is a homogeneous symplectic manifold. The
converse is “almost true”: up to some algebraic and topological corrections (see
[K2] for details) any homogeneous symplectic manifold is a coadjoint orbit. This
theorem looks more natural in the context of Poisson manifolds. Later on we assume
that G is a connected Lie group.

Let us define a Poisson G-manifold as a pair (M, fM(·) ) where M is a Poisson
manifold with an action of G and fM(·) : g → C∗(M) : X 7→ fMX is a Lie algebra
homomorphism such that the following diagram is commutative:

g
L(·)−−−−→ V ect(M)

fM(·) ↘
xs-grad

C∞(M)

(1.5.1)

Here LX is the Lie field on M associated with X ∈ g, and s-grad(f) denotes the
skew gradient of a function f , i.e. the vector field on M such that

s-grad(f)g = {f, g} for all g ∈ C∞(M).(1.5.2)

For a given Lie group G the collection of all Poisson G-manifolds forms the category
P(G) where a morphism α : (M, fM(·) ) → (N, fN(·)) is a smooth map from M to N
which preserves the Poisson brackets: {α∗(φ), α∗(ψ)} = α∗({φ, ψ}) and makes the
following diagram commutative:

C∞(N) α∗−−−−→ C∞(M)

fN
(·)

x xfM
(·)

g
id−−−−→ g

(1.5.3)

Observe that the last condition implies that α commutes with the G-action.
An important example of a Poisson G-manifold is the space (g∗, c) considered

in subsection 1.3. Here the map g→ C∞(g∗) is defined by fg∗
X (F ) = 〈F, X〉.

Theorem 1. The Poisson G-manifold (g∗, c) is a universal attracting object in
the category P(G).

This means that for any object (M, fM(·) ) there exists a unique morphism µ :

(M, fM(·) )→ (g∗, fg∗

(·) ), namely, the so-called moment map defined by

〈µ(m), X〉 = fMX (m).(1.5.4)

Proof. Direct corollary of property (1.5.3) of a morphism in the category P(G).

We observe that for a homogeneous Poisson G-manifold its image under the
moment map µ is necessarily a coadjoint orbit. Moreover, the transitivity of a G-
action implies that µ is locally a diffeomorphism. Hence, any homogeneous Poisson
G-manifold is a covering of a coadjoint orbit. I call this the universal property
of coadjoint orbits.
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1.6. Some particular cases. For most “classical” (or “natural”) groups the
classification of coadjoint orbits is equivalent to one or another already known
problems. In some cases, especially for infinite dimensional groups, new interesting
geometric and analytic problems arise. We discuss here only three examples. Some
others will appear below.

Example 5. Let G = GL(n, R). Then g = Matn(R) possesses an Ad(G)-invariant
bilinear form (cf. 1.1) 〈A, B〉 = tr(AB) so that the coadjoint representation is
equivalent to the adjoint one. The classification of coadjoint orbits is therefore
nothing but the problem of classification of matrices up to similarity.

Example 6. Let M be a compact, smooth, simply connected 3-dimensional man-
ifold with a given volume form vol. Let G = Diff(M, vol) be the group of diffeo-
morphisms of M which preserve the volume form.

The role of the Lie algebra g = Lie(G) is played by the space Vect(M, vol)
of all smooth, divergence-free vector fields on M . We recall that the divergence
of a vector field ξ w.r.t. a volume form vol is a function div ξ on M such that
Lξ(vol) = div ξ · vol. Here Lξ is the Lie derivative along the field ξ. Using the
well known equality

Lξ = d ◦ iξ + iξ ◦ d
we obtain that iξvol = dθξ where θξ is some 1-form on M defined modulo exact
forms (differentials of functions). Now any smooth map K : S1 → M defines a
linear functional FK on g:

FK(ξ) =
∫
S1
K∗(θξ).(1.6.1)

(It is clear that adding to θξ a differential of a function does not change the value of
the integral.) Moreover, the functional FK does not change if we reparametrize S1

so that the orientation is preserved. In other words, it depends only on the oriented
curve K(S1).

We see that the classification of coadjoint orbits for this group contains as a
particular case the classification of oriented knots in M up to a volume-preserving
isotopy.

Example 7. Let Diff+(S1) denote the group of orientation preserving diffeomor-
phisms of the circle and G be its only non-trivial central extension. This example
will be considered more thoroughly in 5.3.3. Here we note only that the classi-
fication of coadjoint orbits for this group is equivalent to each of the following
apparently unrelated problems.

1. Consider the second order differential equation

Ly := cy′′ + p(x)y = 0.(1.6.2)

If we change the independent variable: x 7→ φ(t) and at the same time change the
unknown function y 7→ y ◦ φ · (φ′)− 1

2 , the equation Ly = 0 goes to the equation
L̃ỹ = 0 of the same form but with new coefficient

p̃ = p ◦ φ · (φ′)2 + cS(φ) where S(φ) =
φ′′′

φ′
− 3

2

(
φ′′

φ′

)2

.(1.6.3)

Assume now that the coefficient p(x) is 2π-periodic and the function φ(t) has the
property φ(t+ 2π) = φ(t) + 2π. The problem is to classify the equations (1.6.2) up
to transformations (1.6.3). (For more details see 5.3.3.)
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2. Let G be the simply-connected covering of the group SL(2,R),7 and let A be
the group of all automorphisms of G. The problem is to classify elements of G up
to the action of A.

3. The locally projective structure on the oriented circle S1 is defined by
a covering of S1 by charts {Uα}α∈A with local parameter tα on Uα such that the
transition functions φαβ are fractional linear and orientation preserving. (This
means that tα = atβ+b

ctβ+d , ad− bc > 0.)
The problem is to classify the locally projective structures on S1 up to the action

of Diff+(S1).

2. The triumph of the orbit method: The case of solvable Lie groups

2.1. Lie groups and Lie algebras. The tangent space Tx(X) can be considered
as a linear approximation to a non-linear manifold X . In the case of Lie groups this
has much deeper meaning. We recall that any connected and simply connected Lie
group G can be uniquely reconstructed from its Lie algebra g = Lie(G) = Te(G).

Moreover, the exponential map exp : g→ G is defined 8 such that for any local
homomorphism ρ of one Lie group to another we have the commutative diagram:

G1
ρ−−−−→ G2

exp

x xexp
g1

ρ∗−−−−→ g2

where ρ∗ is the derivative of ρ at the unit point e ∈ G. So, the category of simply
connected Lie groups is isomorphic to the category of Lie algebras.

The orbit method is also a kind of approximation, and the nicer the relation
between a Lie group and its Lie algebra, the better it works.

A Lie group G is called exponential if the map exp : g → G is a diffeomor-
phism. It is known that the class of exponential Lie groups lies strictly between
nilpotent and solvable groups. In particular, no semisimple group is exponential.
On the other side, the group T+(n,R) of all upper triangular real matrices with
positive diagonal elements is exponential. It is worth mentioning that the property
of being exponential is inherited by closed connected subgroups and by semi-direct
extensions.

Now we introduce notations and assumptions and also recall some basic facts.
G – a connected and simply connected Lie group, g = Lie(G) – its Lie algebra,

g∗ – the dual space.
P (g∗) – the naturally graded algebra of polynomial functions on g∗; we identify

it with the symmetric algebra S(g) via the map g 3 X 7→ 2πi〈· , X〉 ∈ P 1(g∗).
Y (g) = P (g∗)G – the algebra of G-invariant polynomials on g∗.
U(g) – the universal enveloping algebra of the Lie algebra g (algebraically, it is

an associative algebra over C generated by g with relations X · Y − Y ·X = [X,Y ];
analytically, U(g) can be viewed as the algebra of all left invariant differential
operators on G so that elements of g are realized by the infinitesimal right shifts).
For any representation T of G in a linear topological space V one can define the

7This group has no faithful finite dimensional linear representations. The simplest non-linear
representation is the action of this group on R which covers the fractional-linear action of SL(2, R)
on P 1(R) ' S1.

8For matrix groups the exponential map is given by the standard formula: expX =
∑∞

n=0
Xn

n!
.
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corresponding representation T∞ of U(g) in the space V∞ of smooth vectors in
V (i.e. such vectors ξ ∈ V for which the map G 3 g 7→ T (g)ξ ∈ V is of class C∞).
Z(g) – the center of U(g) (its elements, viewed as differential operators on G,

are left and right invariant; they are called Laplace or Casimir operators).
The symmetrization map sym : S(g) → U(g) is a linear map defined on

monomials by

sym(X1X2 · · ·Xk) =
1
k!

∑
σ∈Sk

sgn(σ) Xσ(1)Xσ(2) · · ·Xσ(k) for X1, X2, · · · , Xk ∈ g.

(2.1.1)

In particular, for any X ∈ g we have sym(Xn) = Xn ∈ U(g).
This map is G-covariant and bijective. Using the above identification of S(g)

and P (g∗) we get a G-covariant linear isomorphism U(g)→ P (g∗) : A 7→ pA which
maps the subspace Z(g) onto Y (g).
Ĝ – the unitary dual of the group G, i.e. the set of (equivalence classes of)

unitary irreducible representations (unirreps for short) of G.
H – a closed connected subgroup of G, h – its Lie algebra, h∗ – the dual space.
p – the natural projection of g∗ onto h∗ dual to the inclusion h ↪→ g.
O(G) = g∗/G – the set of coadjoint orbits of G.
ResGHT – the restriction to H of the representation T of G.
IndGHS – the representation of G induced by the representation S of H .
TΩ – the representation associated to the coadjoint orbit Ω.
A subalgebra h ⊂ g is called subordinate to a functional F ∈ g∗ if F |[h,h]= 0;

in this case the formula

UF,H(expX) := e2πi〈F,X〉, X ∈ h,(2.1.2)

defines a 1-dimensional unitary representation UF,H of the subgroup H = exp(h).
The generalized character of a representation T of G is the distribution χT

on G which is defined as follows. Let C∞c (G) denote the space of smooth compactly
supported functions on G. For φ ∈ C∞c (G) we define Tφ :=

∫
G
φ(g)T (g)dg where

dg is the Haar measure on G. It is known that for all unirreps of nilpotent or
semisimple Lie groups this operator belongs to the trace class. We put

〈χT , φ〉 := tr Tφ.(2.1.3)

The infinitesimal character of a unirrep T is by definition the homomorphism
λT : Z(g)→ C such that for any A ∈ Z(g) we have

T∞(A) = λT (A) · 1.(2.1.4)

It also can be defined by

T (Aφ) = λT (A) · T (φ) for φ ∈ C∞c (G).(2.1.4′)

Here in the left hand side A ∈ Z(g) is considered as a differential operator on G.

2.2. The orbit method for nilpotent Lie groups. This is the ideal situation
where the orbit method works most perfectly. We shall formulate the results in
the form of a “user’s guide”, where practical instructions are given on how to get
answers to ten basic questions of representation theory. Almost all results in this
section were obtained in [K1]; the homeomorphism of Ĝ and O(G) was proved later
in [B].
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Recall once again that these simple rules are applicable only for simply con-
nected nilpotent groups. For groups of general type we formulate later the “ten
amendments” to these rules.

USER’S GUIDE
What do you want What you have to do

1. Describe the unitary dual Take the space O(G) of coadjoint orbits
Ĝ as a topological space. with the quotient topology.

2. Construct the unirrep TΩ Choose a point F ∈ Ω, take a subalgebra
associated to the orbit Ω ∈ g∗. h of maximal dimension subordinate

to F and put TΩ = IndGHUF,H .
3. Describe the spectrum Take the projection p(Ω) and

of ResGHTΩ. split it into H-orbits.
4. Describe the spectrum of Take the G-saturation of p−1(Ω)

IndGHSΩ. and split it into G-orbits.
5. Describe the spectrum of Take the arithmetic sum Ω1 + Ω2

the tensor product TΩ1 ⊗ TΩ2 . and split it into orbits.
6. Compute the generalized tr TΩ(expX) =

∫
Ω e

2πi〈F,X〉+σ or
character of TΩ. 〈TΩ , φ〉 =

∫
Ω φ̃(F )eσ.

7. Compute the infinitesimal For A ∈ Z(g) take the value
character of TΩ. of pA on the orbit Ω.

8. What is the relation between They are contragradient (dual)
TΩ and T−Ω? to each other.

9. Find the functional It is equal to 1
2 dim Ω.

dimension of TΩ.
10. Compute the Plancherel The measure on O(G) arising when the

measure µ on Ĝ. Lebesgue measure on g∗ is decomposed
into canonical measures on coadjoint orbits.

We give below some worked examples to illustrate how this guide works. Other
instructive examples can be found in [K3], Chapter 7, §2.

Example 1. Let g be the only 4-dimensional nilpotent Lie algebra which does
not split into a direct sum of ideals.9 It has a basis {X1, X2, X3, Y } with the
commutation relations

[Xi, Xj ] = 0, [Y,Xi] = Xi−1, i = 2, 3.(2.2.1)

The matrix realization of g looks as follows:

3∑
i=1

aiXi + bY =


0 b 0 a1

0 0 b a2

0 0 0 a3

0 0 0 0

 .

The general group element is

g(α1, α2, α3, β) =


1 β β2

2 α1

0 1 β α2

0 0 1 α3

0 0 0 1

 .

9Representations of this Lie algebra are used in the theory of an anharmonic oscillator and
were first described in [D1].
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The element F ∈ g∗ with coordinates {X1, X2, X3, Y } can be written as a lower
triangular matrix

F =


0 0 0 0
Y 0 0 0
0 0 0 0
X1 X2 X3 0

 ,

and the projection p : Mat4(R)→ g∗ has the form:

p(‖ Aij ‖) =


0 0 0 0

A21 +A32 0 0 0
0 0 0 0
A41 A42 A43 0

 .

Direct computation shows that the coadjoint action is

K(g(α1, α2, α3, β))(X1, X2, X3, Y ) =

(X1, X2 − βX1, X3 − βX2 +
β2

2
X1, Y + α2X1 + α3X2 − βα3X1).

(2.2.2)

We see immediately that p1(F ) = X1 is an invariant polynomial on g∗ (indeed,
the element X1 belongs to the center of g). But this cannot be the only invariant,
because the generic orbit cannot have the dimension 3.10

To find another invariant, let’s consider the plane X2 = 0, Y = 0. It is clear
from (2.2.2) that almost all orbits meet this plane. An easy computation shows
that for the orbit of (X1, X2, X3, Y ) the intersection point has the coordinates
(X1, 0, X3 − X2

2
2X1

, 0). So, the desired polynomial invariant is p2 = 2X1X3 −X2
2 .

Consider the common level set of these two invariants given by

p1(F ) = c1, p2(F ) = c2.(2.2.3)

We leave it to the reader to check that for c1 6= 0 this level set is a single orbit.
For c1 = 0, c2 < 0 it splits into two separate orbits distinguished by the sign of
X2; for c1 = 0, c2 > 0 the level is empty; and finally for c1 = c2 = 0 it splits into
0-dimensional orbits (fixpoints of the coadjoint action).

The final description of the topological space Ĝ looks as follows. Take a real
plane R2

c1,c2 , delete the line c1 = 0, and glue in two points instead of each point of
the deleted ray c1 < 0 and a whole 2-plane instead of the deleted origin.

Example 2. Let us derive the explicit formulae for unirreps of the group G from
Example 1.

The 1-dimensional representation associated with the one-point orbit {(0, 0, a, b)}
is

Ua,b(g(α1, α2, α3, β)) = e2πi(aα3+bβ).(2.2.4)

All the other representations correspond to 2-dimensional orbits. They are infi-
nite dimensional and have the functional dimension one (see rule 9). Roughly
speaking, the latter statement means that the representation is naturally realized
in a space of functions of one variable.11 In our case, according to rule 2, each of

10Recall that coadjoint orbits are even dimensional.
11For a more detailed discussion of the notion of functional dimension we refer to [K4], Part

II. See also the discussion in Chapter 8.
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these representations is induced from a 1-dimensional representation of the appro-
priate 3-dimensional subgroup. In fact, for all the cases we can take the subgroup
A = exp a where a is spanned by X1, X2, X3. (It is clear that a, being abelian, is
subordinate to any functional and has the maximal possible dimension.)

Now we recall the standard procedure (described in detail e.g. in [K2]) to form
a unitary induced representation IndGA U . For a moment we assume that the
homogeneous space X = A\G admits a G-invariant measure µ. In case of nilpotent
Lie groups such a measure always exists and is unique up to a constant factor. In
the general case the construction below needs a slight modification (see [K2]).

In fact, there are two equivalent procedures: one is more convenient in theoretical
questions, and the other in computations.

1. Consider the space L(G,A,U) of complex valued functions φ on G satisfying

φ(ag) = U(a)φ(g), for all a ∈ A, g ∈ G.(2.2.5)

The group G acts on L(G,A,U) by right shifts:

(T (g1)φ)(g) = φ(gg1).(2.2.6)

One can introduce an inner product in L(G,A,U) so that T becomes a unitary
representation. This is the first way to define IndGA U .

2. Consider the right coset space X = A\G, and choose a representative s(x) ∈
G for each coset x ∈ X . Then each group element can be uniquely written as
g = a · s(x), a ∈ A, x ∈ X . Apply this to the element s(x) · g, and write

s(x) · g = a · s(y), where a = a(x, g) ∈ A, y = y(x, g) ∈ X.(2.2.7)

The induced representation T = IndGA U acts by definition on the Hilbert space
H = L2(X,µ) via

(T (g)f)(x) = U(a(x, g)) · f(y(x, g)).(2.2.8)

One can check that representations (2.2.6) and (2.2.8) are in fact equivalent.
Namely, to a function φ ∈ L(G,A,U) there corresponds the function f = φ◦s ∈ H.

In our special case it is convenient to identify the measure space (X,µ) with
(R1, dx) and take the element exp xY as s(x), x ∈ R1.

Next we have to solve the equation (2.2.6), which in our case takes the form
1 x x2

2 0
0 1 x 0
0 0 1 0
0 0 0 1

 ·


1 β β2

2 α1

0 1 β α2

0 0 1 α3

0 0 0 1

 =


1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1

 ·


1 y y2

2 0
0 1 y 0
0 0 1 0
0 0 0 1


with given αi, β and x and unknown ai and y. The answer is

y = x+ β, a1 = α1 + α2x+
1
2
α3x

2, a2 = α2 + α3x, a3 = α3.

The last step is to put in (2.2.8) U = UF,A, where for generic representations
Tc1,c2 with c1 6= 0 we have to take F = (c1, 0, c22c1

, 0), while for the remaining
representations Sc, c 6= 0, we put F = (0, c, 0, 0).

So we come to the final formulae

(Tc1,c2(g(α1, α2, α3, β))f)(x) = e
2πi(c1(α1+α2x+

1
2α3x

2)+
c2
2c1

α3)
f(x+ β)(2.2.9)

and

(Sc(g(α1, α2, α3, β))f)(x) = e2πic(α2+α3x)f(x+ β).(2.2.10)
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In conclusion we give the table of the images of basic elements of g and of the
central elements A1 = 1

2πiX1 and A2 = 1
4π2 (X2

2−2X1X3) ∈ Z(g) under the unirreps
constructed.

Tc1,c2 Sc Ua,b

X1 2πic1 0 0
X2 2πic1x 2πic 0
X3 πic1x

2 + 2πic2 2πicx 2πia
Y d

dx
d
dx 2πib

A1 c1 0 0
A2 2c1c2 −c2 0

We observe that the commutation relations (2.2.1) are obviously satisfied and
that the infinitesimal characters separate generic representations Tc1,c2 (but not Sc
and S−c).

Example 3. Consider the subalgebra h ⊂ g generated by X1, X2 and Y . It is the
famous Heisenberg Lie algebra whose infinite dimensional unirreps depend on one
real parameter ~ (interpreted as the Planck constant) and are given by

V~(X1) = 2πi~, V~(X2) = 2πi~x, V~(Y ) =
d

dx
.

From the table above it is clear that ResGH Tc1,c2 = Vc1 . We leave it to the reader
to check that it agrees with rule 3.

Example 4. The group G acts naturally by affine unimodular transformation of
R3:

g(α1, α2, α3, β)(x, y, z) = (x+ α1 + βy +
β2

2
z, y + α2 + βz, z + α3).

Thus, we get a unitary representation T of G in L2(R3, dxdydz). What is its
spectrum (i.e. decomposition into unirreps)?12

Observe that T =IndGH 1 where H is the 1-dimensional subgroup exp R · Y and
1 denotes the trivial 1-dimensional representation of H . According to rule 4, we
have to consider the projection pY of g∗ on the Y -axis, take the G-saturation of
the hyperplane Y = 0 (which is p−1

Y (0)) and decompose it into G-orbits. This
hyperplane contains all 2-dimensional orbits and also a 1-parameter family of 0-
dimensional orbits. And these are exactly the unirreps which are weakly contained
in T in the sense of [F].

Since in decomposition problems one can neglect sets of measure 0, we can
restrict ourselves to generic representations. The final answer looks as follows:

T =
∫
Tc1,c2dµ(c1, c2)

where µ is any measure equivalent to the Lebesgue measure on R2
c1,c2 .

13

12We assume here that the reader is acquainted with the decomposition theory of unitary
representation; see e.g. [K2] or [K3].

13The space L2(R3, dxdydz) has functional dimension 3, so it is natural that it splits into a 2-
parameter family of spaces of functional dimension 1. This decomposition can also be interpreted
as simultaneous diagonalization (spectral decomposition) of the two self adjoint Laplace operators
A1 and A2.



448 A. A. KIRILLOV

Example 5. Here we compute the spectrum of the tensor product Tc1,c2 ⊗ Sc.
According to rule 5 we have to consider the arithmetic sum of Ωc1,c2 , and Ωc.
The generic points of these orbits have the coordinates (c1, X, c2+X

2

2c1
, Y ) and

(0, c, x, y) respectively. It follows that the arithmetic sum is the hyperplane
X1 = c1. So, the answer is: the spectrum consists of all representations Tc1,c2
with fixed c1. This agrees with the count of functional dimensions: for the tensor
product the functional dimension is 2 as well as for the sum of all Tc1,c2 with fixed
value of c1.

Example 6. Here we shall compute the generalized character χc1,c2 of the unirrep
Tc1,c2 .

According to rule 6 we have to compute the generalized function on G given by∫
Ωc1,c2

e2πi〈F,X〉+σ =
∫

Ωc1,c2

e2πi〈F,X〉σ

(we use the equality eσ = 1 + σ on the 2-dimensional orbit Ωc1,c2).
Let’s start with computation of the form σ. From (2.2.2) we get the following

expression for the infinitesimal coadjoint action of g on g∗:

K∗(X1) = 0, K∗(X2) = −X1
∂

∂Y
,

K∗(X3) = −X2
∂

∂Y
, K∗(Y ) = X1

∂

∂X2
+X2

∂

∂X3
.

The orbit Ωc1,c2 is given by equations (2.2.3), so one can take X := X2 and Y as
global coordinates on it. In terms of these coordinates the g-action on Ωc1,c2 takes
the form

K∗(X1) = 0, K∗(X2) = −c1 ∂

∂Y
, K∗(X3) = −X ∂

∂Y
, K∗(Y ) = c1

∂

∂X
.

In this case formula (1.2.2) implies

σ =
dX ∧ dY

c1
.(2.2.11)

We are now in a position to compute the integral above. Using the equations (2.2.3)
we can rewrite it as

χc1,c2(exp (
3∑
i=1

aiXi + bY )) =
∫

R2
e2πi(a1c1+a2X+a3

c2+X2

2c1
+bY ) dXdY

c1
,

and we get the final formula

χc1,c2(g(a1, a2, a3, b)) = |a3c1|− 1
2 e2πi(c1(a1− a2

2
2a3

)+c2
a3
2c1

− 1
4 sgn(a3c1))δ(b).(2.2.12)

It is worth mentioning that the same result can be obtained by formal compu-
tation of the trace of the operator (2.2.9) considered as an integral operator with
distributional kernel. (For this we have to take into account that exp(

∑3
i=1 aiXi) =

g(a1, a2, a3, 0).)

Example 7. Let us now compute the Plancherel measure µ on Ĝ. We shall use
the values c1, c2 as local coordinates on Ĝ. By definition, we have

δ(g) =
∫
Ĝ

χc1,c2(g)dµ.
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The direct computation using formula (2.2.12) for the generalized character is rather
complicated, but rule 10 gives the answer immediately:

µ =
1
2
dc1dc2.(2.2.13)

Indeed, from (2.2.3) and (2.2.9) we see that∫
g∗
f(X1, X2, X3, Y )dX1dX2dX3dY =

1
2

∫
R2
dc1dc2

∫
Ωc1,c2

f(F ) · σ.

2.3. Exponential Lie groups. Most of the prescriptions of the User’s Guide
above (namely, rules 1, 3, 4, 5, 8, 9) are still valid in this more general situation.

These results were obtained mainly by the French school; see [BCD]. The validity
of rules 3, 4, 5 was first proved in [Bu]. As for the homeomorphism of Ĝ and O(G)
it was established only recently in [LL].

Rules 2, 6, 7 and 10 need modifications which we shall discuss below.
In rule 2 the following important correction is needed. Let us say that a subal-

gebra h subordinate to F ∈ g∗ satisfies the Pukanszky condition if

p−1(p(F )) = F + h⊥ ⊂ ΩF ;(2.3.1)

i.e. the preimage of p(F ) lies entirely in one G-orbit.
The modified rule 2 differs from the initial one by the requirement that h

satisfies the Pukanszky condition. In fact, the necessity of this condition follows
immediately from rule 4. According to that rule the spectrum of the induced
representation IndGHUF,H consists of a single point iff the Pukanszky condition is
satisfied, and in this case IndGHUF,H should be a multiple of a unirrep associated
with ΩF .

Taking into account the functional dimension argument (rule 9), we conclude
that the multiplicity is 1 when the equality

codimgh =
1
2

dim ΩF(2.3.2)

holds. So, (2.3.1) and (2.3.2) together give the necessary and sufficient condition
for

TΩF = IndGHUF,H .(2.3.3)

We have not included the Pukanszky condition in the initial rule 2 because of
the following fact.

Proposition 1. i) Let g be any Lie algebra and h ⊂ g be any Lie subalgebra which
is subordinate to F and has codimension 1

2 dim Ω in g. Then the affine manifold
F + h⊥ has open intersection with ΩF (i.e. the local version of the Pukanszky
condition is satisfied).

ii) If g is a nilpotent Lie algebra, (2.3.1) is always satisfied.

Proof. Part i) follows from the consideration of the H-orbit of F whereH = exp(h).
One easily checks that this orbit is contained in F+h⊥ and has the same dimension.

Part ii) is a consequence of i) and of the following useful fact: for nilpotent Lie
groups all coadjoint orbits are affine algebraic subvarieties in g∗ (i.e. are defined by
a system of polynomial equations).

For general exponential groups this is no longer true (see Example 8 below), and
we have to include the Pukanszky condition in the formulation of rule 2.
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Theorem 1. (See [P1]) The modified rule 2 is valid for all exponential Lie groups.

Now we come to rule 6, which needs corrections for two reasons. First, for
non-nilpotent exponential groups the generalized characters of unirreps are not
necessarily well defined as distributions. Namely, it could happen that the operator
Tφ does not belong to the trace class even for φ ∈ C∞c (G).

The explanation of this phenomenon by the orbit method is very simple. The
coadjoint orbits are no longer closed submanifolds in g∗. As a consequence, the
canonical volume form associated with the symplectic structure on an orbit can
have a singularity at the boundary, and the integral formula of rule 6 does not
define a distribution on G. So, we have to restrict the domain of definition of
the generalized character by imposing additional conditions on the test functions
φ ∈ C∞c (G). In the simplest case (see Example 8 below) the additional condition
is very simple and natural: the Fourier transform

φ̃(F ) =
∫

g

φ(exp X) · e2πi〈F,X〉dX(2.3.4)

should vanish on the boundary of the orbit.
Second, for nilpotent groups the Fourier transform φ 7→ φ̃ given by (2.3.4) defines

a unitary transformation from L2(G, dg) to L2(g∗, dF ) where dg is the Haar measure
on G and dX is the corresponding Lebesgue measure on g. Recall that in terms of
this transform rule 6 looks like

〈χΩ, φ〉 := tr TΩ(φ) =
∫

Ω

φ̃(F ) · σ
r

r!
where r =

dim Ω
2

.(2.3.5)

Or, in more simple words:
The Fourier transform of χΩ is the canonical measure on the coadjoint orbit Ω.
In the case of non-nilpotent groups one has to correct the Fourier transform

(2.3.4) taking into account the more complicated relation between invariant mea-
sures on G and on g.

For non-unimodular groups the densities of the right and left Haar measures
have the following form in canonical coordinates:

dr(exp X) = det
(
eadX − 1

adX

)
dX, dl(exp X) = det

(
1− e−adX

adX

)
dX.

Let us define their “geometric mean” q(X)dX by q(X) = det
(

sinh(adX/2)
adX/2

)
.

The function q(X) is analytic on g, and its zeros coincide with singular points of
the exponential map. For exponential groups it is everywhere positive, and so the
function

j(X) =
√
q(X) =

(
det

(
sinh(adX/2)

adX/2

)) 1
2

, j(0) = 1,(2.3.6)

is well defined and analytic.
We define the modified Fourier transform by

φ̃(F ) =
∫

g

e2πi<F,X>φ(exp X)j(X)dX.(2.3.4′)

For unimodular exponential groups this is a unitary bijection from L2(G, dg) to
L2(g∗, dF ), and we shall use it instead of (2.3.4) in the expression (2.3.5).
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The modified rule 6 acquires the form

tr TΩ(expX) =
1

j(X)

∫
Ω

e2πi〈F,X〉+σ.(2.3.7)

Since for nilpotent groups j(X) ≡ 1, the modified rule 6 coincides in this case with
the original one.

It turns out that the modified rule 6 is valid for a wide class of non-nilpotent
groups provided that test functions are subjected to appropriate additional restric-
tions.

Example 8. Let G = Aff+(1,R) be the group of orientation preserving affine
transformations of the real line.14 It is realized by 2× 2 matrices of the form

g =
(
a b
0 1

)
, a, b ∈ R, a > 0.

The elements of the Lie algebra g and of the dual space g∗ are realized by real 2×2
matrices of the form

X =
(
α β
0 0

)
, F =

(
x 0
y 0

)
and the coadjoint action is

K(a, b) : (x, y) 7→ (x+ a−1by, a−1y).

We see that g∗ splits into two 2-dimensional orbits Ω± = {(x, y)| ± y > 0} and a
family of 0-dimensional orbits Ωx = {(x, 0)}.

We leave to the reader the explicit construction of unirreps for G and the com-
putation of their characters. Observe only that for any F ∈ Ω± there is exactly
one 1-dimensional subalgebra (the 1-dimensional ideal h ⊂ g) which satisfies the
Pukanszky condition.

The initial formulation of rule 7 also should be corrected. The point is that the
map A 7→ PA of Y (g) to Z(g) defined in 2.1 via the symmetrization (2.1.1) is not
an algebra homomorphism for general g. We shall have an opportunity to speak
more about it in 6.1 and here cite only the correct formula. Namely, the modified
rule 7 looks exactly as before: λΩ(A) = pA(Ω), but with a differently defined
correspondence A←→ pA.

Let J ∈ EndS(g) be the differential operator of infinite order with constant
coefficients on g∗ which corresponds to the analytic function j(X) on g defined
above by (2.3.6). For A ∈ U(g) we define pA ∈ P (g∗) so that

A = sym (JpA).(2.3.8)

Note that for nilpotent g this definition of pA coincides with the initial one because
j(X) ≡ 1 in this case.

Consider finally rule 10 concerning the Plancherel formula and the Plancherel
measure. The representation-theoretic meaning of the Plancherel formula for a
unimodular group G is the explicit decomposition of the representation of G × G
on L2(G, dg) into unirreps. It can be written in three equivalent ways:

14We refer to [K3], where this simple but instructive case is treated in detail (see also [BCD]
and [LL]).
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1. As the expression of the δ-function on G supported at e as a (continuous)
linear combination of characters:

δ(g) =
∫
Ĝ

χλ(g)dµ(λ).(2.3.9)

2. As the inversion formula for the non-commutative Fourier transform:

φ(g) =
∫
Ĝ

tr (πλ(φ)πλ(g)∗) dµ(λ).(2.3.10)

3. As the analog of the classical Plancherel formula:∫
G

|φ(g)|2dg =
∫
Ĝ

tr (πλ(φ)πλ(φ)∗) dµ(λ).(2.3.11)

The measure dµ appearing in all three cases is called the Plancherel measure
on Ĝ.

On general Lie groups the left and right Haar measures do not coincide. Thus,
the Plancherel formula makes no sense. In terms of coadjoint orbits this is reflected
by the fact that the Lebesgue measure on g∗ is no longer K(G)-invariant, hence
can’t be decomposed into canonical measures on coadjoint orbits.

But for unimodular exponential groups rule 10 is still valid (it follows from the
modified rule 6).

2.4. Solvable Lie groups. There is a new phenomenon which occurs when we
consider non-exponential solvable groups. Some of these groups do not belong
to type I. This means that the representation theory for these groups has several
unpleasant features: the topological space Ĝ violates even the mildest separation
axiom T0,

15, the decomposition of a unitary representation into irreducible com-
ponents can be essentially non-unique, there exist factor representations of types
II and III in the sense of von Neumann, etc. I suggested the term wild for these
groups. Accordingly, groups of type I will be called tame.

It is interesting that there are two different reasons for a solvable Lie group to
be wild. Both have a simple interpretation in the orbit picture. The first reason
is that the space O(G) can violate the semiseparation axiom. This is because
coadjoint orbits are not necessarily locally closed. The simplest examples of such
an occurrence were discovered by F.I. Mautner in the 50’s and rediscovered later
many times.

Example 9. The groups in question have dimension 5, depend on a real irrational
parameter α and admit the matrix realizationeit 0 z

0 eiαt w
0 0 1

 , t ∈ R, z, w ∈ C.(2.4.1)

The typical coadjoint orbit is 2-dimensional with a 3-dimensional closure.
The second reason is that the canonical form σ on some orbits can be non-

exact. This innocent looking circumstance implies that after applying the standard
Mackey technique (see e.g. [K2, §13]) we must consider representations of some
non-abelian discrete groups which are usually wild.

15Recall that a topological space is called semiseparated or a T0-space if for each pair of
distinct points at least one possesses a neighborhood which does not contain the other.
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Example 10. The simplest group of this kind has dimension seven and can be
realized by block-diagonal 6× 6 matrices with diagonal 3× 3 blocks of the formeis 0 z

0 eit w
0 0 1

 and

1 s r
0 1 t
0 0 1

 , s, r, t ∈ R, z, w ∈ C.(2.4.2)

We refer to [K2, §19] for the description of orbits and representations of the wild
groups from examples 9 and 10.

It is natural for wild groups of the first kind to extend the notion of coadjoint
orbit and consider ergodic G-invariant measures on g∗ as virtual coadjoint or-
bits.16 This was suggested in [K2] (not knowing that it had already been done in
[P2], where in particular the analogue of rule 6 was obtained; the left hand side of
the formula is the relative trace of the operator T (g), and the right hand side is
the integral over a virtual orbit).

Now we return to the tame groups. The description of the unitary dual for
all solvable Lie groups of type I was obtained by L. Auslander and B. Kostant in
[AK]. We shall present here their results together with some essential complements
suggested by I.M. Shchepochkina [Sh].17

Theorem 2 (Auslander-Kostant). A connected and simply connected solvable Lie
group G is tame (belongs to type I) iff the space O(G) is semiseparated and the
canonical form σ is exact on each orbit.

Even for tame solvable groups the correspondence between coadjoint orbits and
representations need not be one-to-one. To describe this correspondence we have
to modify the space g∗.

The point is that, unlike the case of exponential Lie groups, a coadjoint orbit
Ω need not be simply connected. Simple topological considerations show that the
fundamental group π1(Ω) is isomorphic to Stab(F )/Stab0(F ) (here, as usual, H0

denotes the connected component of the identity in H).
We define a rigged momentum as a pair (F, χ) where F ∈ g∗ and χ is a

unitary 1-dimensional representation of Stab(F ) such that χ∗(e) = 2πiF |stab(F ).18

The set of all rigged momenta will be denoted by g∗rigg. The group G acts naturally
on g∗rigg; the corresponding orbits are called rigged orbits, and the set of all such
orbits will be denoted by Origg(G).

Proposition 2. i) The G-action commutes with the natural projection

π : g∗rigg → g∗ : (F, χ) 7→ F.

ii) For tame groups the projection π is onto and the fiber over a point F ∈ g∗ is
a torus of dimension equal to the first Betti number of ΩF .

So, the correspondence between usual and rigged orbits is one-to-many.
The second basic result is

16One can prove that in case of semiseparated O(G) all such measures are proportional to
canonical measures on orbits.

17Unfortunately, the complete text of her Ph.D. thesis (Moscow, 1980) was never published
and so is inaccessible for the mathematical community in the West.

18Recall that such χ exists only if the orbit ΩF is integral (see Proposition 1 in 1.2). For type
I solvable groups this condition is satisfied because σ is exact.
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Theorem 3 (Auslander-Kostant). For a connected and simply connected solvable
Lie group G of type I there is a natural bijection between Ĝ and the space Origg(G).

We refer to the original paper [AK] or to [K3] for the precise construction of the
unirrep TΩ associated with a rigged orbit Ω. Here we remark only that it requires
the new procedure of holomorphic induction and outline the main idea which is
behind this notion. We shall speak more about it in 3.2.

The usual induction procedure is not sufficient for the construction of a unirrep
from a given rigged orbit. The reason is that for some F ∈ g∗ there is no subalgebra
h ⊂ g of the required dimension which is subordinate to the functional F . But a
complex subalgebra p with these properties always exists in the complexification
gC.

Now, the condition (2.2.5) which we used above (see Example 2) to define the
representation space L(G,A,U) can be replaced by its infinitesimal version. In this
form it makes sense for a complex subalgebra p. Namely, for (F, χ) ∈ g∗rigg and for
a complex subalgebra p ∈ gC subordinate to F we define L(G,F, χ, p) as the space
of complex valued functions φ on G satisfying

φ(hg) = χ(h)φ(g) for h ∈ Stab(F ), (LX + 2πi〈F, X〉)φ = 0 for X ∈ p(2.4.3)

where LX is the right invariant complex vector field on G associated with X ∈ gC.
It turns out that under suitable conditions on p (including the Pukanszky con-

dition and the condition codimC p = 1
2 rkBF ) the resulting representation of G by

right shifts in L(G,F, χ, p) is irreducible and its equivalence class depends only on
the rigged orbit Ω which contains (F, χ). Therefore, we denote it by TΩ.

Now we discuss briefly the modified rules 3, 4, 5 suggested by Shchepochkina.
Let H be a closed subgroup of G. We say that a rigged orbit Ω′ ∈ Origg(H) lies
under a rigged orbit Ω ∈ Origg(G) (or, equivalently, Ω lies over Ω′) if there exist
rigged momenta (F, χ) ∈ Ω and (F ′, χ′) ∈ Ω′ such that the following conditions are
satisfied:

p(F ) = F ′, χ = χ′ on H ∩ Stab(F ).(2.4.4)

We also define the sum of rigged orbits Ω1 and Ω2 as the set of all (F, χ) ∈
Origg(G) for which there exist (Fi, χi) ∈ Ωi, i = 1, 2, such that

F = F1 + F2, χ = χ1χ2 on Stab(F1) ∩ Stab(F2).

Theorem 4 (Shchepochkina). Let G be a connected and simply connected solvable
Lie group and H a closed subgroup. Then

1. The spectrum of IndGHSΩ′ consists of those TΩ for which Ω lies over Ω′.
2. The spectrum of ResGHTΩ consists of those SΩ′ for which Ω′ lies under Ω.
3. The spectrum of TΩ1 ⊗ TΩ2 consists of those TΩ for which Ω lies in Ω1 + Ω2.

The proofs use the induction on the dimension ofG and are based on the following
result, which is interesting in its own right.

Let G be a connected and simply connected solvable Lie group, H a closed
subgroup and K the maximal connected normal subgroup of G which is contained
in H . Then the quotient group G/K is called a basic group.

Proposition 3 (Shchepochkina). Any basic group coincides with the simply con-
nected covering of one of the following groups:

1. The only non-commutative 2-dimensional Lie group G2 = Aff(1,R).
2. The one-parameter family of 3-dimensional groups G3(γ) in Aff(1,C) acting

on C by translations and multiplications by eγt, γ ∈ C\R.
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3. The 4-dimensional group G4 = Aff(1,C).

3. The first obstacle: Compact Lie groups

The case of compact Lie groups is the oldest and the most developed part of
the representation theory of Lie groups. For classical compact groups, i.e. unitary
groups over R, C, or H, almost all basic results are known since the 20’s and were
intensively used in quantum physics, which appeared just at that time.19 So, it is
unlikely to expect that one can tell something new in this domain. Nevertheless,
the orbit method gives new insight into the known results and even reveals some
new facts.

At the same time the idyllic harmony of the unirreps–orbits correspondence
starts to break down in this case. In particular, the two ways to establish this
correspondence (via the induction-restriction functors from the one side and via
character theory from the other one) lead to different results!20

3.1. Geometry of coadjoint orbits for compact Lie groups. Let G be a
compact connected Lie group. It is well known that any finite dimensional real
representation of G is equivalent to an orthogonal one. So, the Lie algebra g =
Lie(G) possesses a non-degenerate positive G-invariant bilinear form. It makes it
possible to identify g∗ with g and the coadjoint representation with the adjoint one.

Another well known theorem about compact transformation groups claims that
for a given G there are only finitely many types of coadjoint orbits as homogeneous
G-manifolds. In other words, there are finitely many subgroups Gi, 1 ≤ i ≤ k,
such that any orbit is isomorphic to a coset space Xi = G/Gi. More precisely, if
T is a maximal abelian subgroup in G,21 then the subgroups Gi can be chosen so
that T ⊂ Gi ⊂ G and every group intermediate between T and G is conjugate to
some Gi.

Example 1. Let G = U(n), T = the subgroup of diagonal matrices. Then g con-
sists of all n × n skew-Hermitian matrices X . We can take (X, Y ) := −tr (XY )
as an invariant bilinear form on g. Every (co)adjoint orbit Ω has non-empty inter-
section with the subspace t = Lie(T ). Gathering equal eigenvalues of X in blocks
of sizes n1, · · · , nr, we see that Stab(X) = Un1, ··· , nr

∼= Un1 × · · · × Unr . So, the
number of different types of orbits is equal to the number p(n) of all partitions of
n.

The space X = G/T is called the full flag manifold for G. The other ho-
mogeneous spaces Xi = G/Gi are called degenerate flag manifolds: they can
be obtained from X by a projection whose fibers are isomorphic to smaller flag
manifolds Gi/T .

The flag manifolds have rich geometric structure.
First, being homogeneous spaces of a compact Lie group, they admit a G-

invariant Riemannian metric.
Second, being coadjoint orbits, they have a canonical G-invariant symplectic

structure.

19We are not speaking about abelian compact Lie groups which were used in Fourier analysis
more than two centuries ago.

20It is a temptation to consider this discrepancy as a peculiar manifestation of the Heisenberg
uncertainty principle: to a given unirrep we can associate an orbit with only a certain degree of
accuracy (of size ρ = half sum of positive roots).

21All such subgroups are connected and belong to the same conjugacy class.
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Third, they can be endowed with a G-invariant complex structure (i.e. admit
complex coordinates in which the action of G is holomorphic).

Moreover, all three structures can be united in one by saying that flag manifolds
are homogeneous Kähler G-manifolds.

We recall that a complex manifold X is called Kähler if in every tangent space
Tx(X) a Hermitian form w is given such that its real part <w defines a Riemannian
metric on X while its imaginary part =w defines a symplectic structure.

Locally any Kähler form w can be written as w = wαβ̄dzαdz̄β where the coeffi-
cients have the form wαβ̄ = ∂α∂̄βK for some real-valued function K which is called
the Kähler potential of w.

Example 2. Let G = U(n+ 1), X = G/Un,1 = Pn(C). For n ≥ 2 this is a degen-
erate flag manifold. Denote by (x0 : x1 : . . . : xn) the homogeneous coordinates
on X , and put

Ki = − log
|xi|2∑n
k=0 |xk|2

on the affine part Xi ⊂ X where xi 6= 0.(3.1.1)

Since the difference Kj −Ki = log xi

xj
+ log xi

xj
is a sum of analytic and antianalytic

functions, the corresponding Kähler form does not depend on i and is well defined
on X . In local coordinates zk = xk

x0
, 1 ≤ k ≤ n, the Kähler form on X0 looks like

w =
∑n
k=1 |dzk|2

1 +
∑n
k=0 |zk|2

−
∑

k,l z̄kzldzkdz̄l

(1 +
∑n
k=0 |zk|2)2

.(3.1.2)

There is a simple explanation for why all flag manifolds possess a complex struc-
ture. To make things technically simpler we assume that G is simply connected.22

Then it is a maximal compact subgroup of a complex semisimple Lie group GC
(also simply connected) with the Lie algebra gC = g ⊗ C. Choose a Borel (i.e.
maximal connected solvable) subgroup B ⊂ GC which contains T . Then H = TC
will be a Cartan (i.e. maximal abelian Ad-semisimple) subgroup of GC.

Consider the complex homogeneous manifold Y = GC/B. It turns out that
our compact group G acts transitively on it, and the stabilizer of the initial point
coincides with B ∩G = T . So we can identify X with Y and obtain a G-invariant
complex structure on the flag manifoldX . For degenerate flag manifoldsXi = G/Gi
the situation is analogous; the role of Yi is played by GC/Pi where Pi is a so-called
parabolic subgroup of GC which contains Gi.

Remark. The G-invariant complex structure on a flag manifold is not unique. In the
case of full flag manifold X = G/T all possible complex structures form a principal
homogeneous space for the Weyl group W = NG(T )/ZG(T ). This group acts
by automorphisms of X considered as a G-space and permutes the |W | different
G-invariant complex structures on X . (Note, that there are exactly |W | different
Borel subgroups containing H , hence |W | different ways to identify X with Y .)

From now on we fix the choice of a complex structure on X or, in other words,
fix a Borel subgroup B ⊃ H ⊃ T .

Example 3. Let G = SU(2). Then GC = SL(2,C), X = S2, Y = P 1(C) and the
two complex structures on S2 result from the two possible G-covariant identifica-
tions of S2 with P 1(C).

We leave to the reader the rather instructive

22This assumption in no way changes the coadjoint orbits.
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Exercise. Describe the six different invariant complex structures onX = SU(3)/T .

Hint. The points of the space Y = SL(3,C)/B are geometrically realized by pairs
V1 ⊂ V2 where Vi is an i-dimensional subspace in C3. We can consider V1 as a point
of the projective plane P 2(C) and V2 (more precisely, its annihilator V ⊥2 ⊂ (C3)∗)
as a point of a dual projective plane P 2(C)∗. We get a G-covariant embedding of Y
into the product of two dual complex projective planes. The six G-covariant maps
X → Y correspond to the six fixpoints of the T -action on Y .

Now we discuss the topology of coadjoint orbits. Let Ω ⊂ g∗ be such an orbit.
The canonical symplectic form σ on Ω defines a cohomology class [σ] ∈ H2(X,R).

Recall that an orbit Ω ⊂ g∗ is called integral (see 1.2.4) if [σ] ∈ H2(X,Z) ⊂
H2(X,R). The number of “integrality conditions” for a given orbit type is equal
to the second Betti number of these orbits. We shall see that for compact groups
the integral orbits form a discrete set.

It is well known that for a compact Lie group G with π1(G) = 0 we also have
π2(G) = 0. From the exact sequence

· · · → πk(G)→ πk(X)→ πk−1(T )→ πk−1(G)→ · · ·
it follows that the flag manifold X is simply connected and

H2(X,Z) ∼= π2(X) ∼= π1(T ) ∼= T̂ ∼= ZdimT .(3.1.3)

Now let Ω be an orbit in g∗. We identify g∗ with g and g∗C with gC so that h∗

goes to h and the weight lattice P ⊂ h∗ corresponds to a lattice in it∗ ⊂ ig∗ ≈ ig.
The intersection of Ω with t∗ is a finite set which forms a single W -orbit. We denote
by Ωλ the orbit passing through the point iλ ∈ t∗.

Proposition 1. i) The orbit Ωλ is integral iff λ ∈ P .
ii) The dimension of Ωλ is equal to the number of roots non-orthogonal to λ.

In particular, all orbits of maximal dimension are isomorphic as G-manifolds to
the full flag manifold X .

3.2. Borel-Weil-Bott theorem. This is a culmination result in the representa-
tion theory of compact Lie groups. It gives a uniform geometric construction for
all unirreps of all compact connected Lie groups.

In fact, the first part of it (the so-called Borel-Weil theorem) is the modern
interpretation of the E. Cartan theory of the highest weight. It admits a beautiful
generalization due to R. Bott. We want to show how these results agree with the
ideology of the orbit method.

The Borel-Weil theory deals with homogeneous holomorphic line bundles L on
flag manifolds X , i.e. bundles which admit a G-action by holomorphic transfor-
mations. In fact, this action automatically extends to an action of the complex
group GC. This allows us to describe everything in group-theoretic terms. Namely,
let χ be a holomorphic character (i.e. complex one-dimensional representation) of
the Borel subgroup B. Let B act on GC by right shifts, and denote by Cχ the
1-dimensional complex space where B acts via the character χ. Then B acts freely
on the Cartesian product M = GC × Cχ. The set of B-orbits in M is called the
fibered product over B and is denoted GC×BCχ. It is a complex manifold which
has a natural projection on X = GC/B with a fiber C over each point. Hence, we
can identify it with the total space of a line bundle Lχ over X . A holomorphic
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section s : X → Lχ is represented by a holomorphic function φs on GC satisfying

φs(gb) = χ(b) · φs(g).(3.2.1)

We denote by Γhol(Lχ) the (finite dimensional) space of all holomorphic sections
of Lχ. The group GC acts on this space by

φg·s(g′) = φs(g−1g′).(3.2.2)

The representation thus obtained is called holomorphically induced from (B, χ)
and is denoted by Ind holGC

B χ.
It is easy to describe the set of homogeneous holomorphic bundles on X or,

equivalently, the set of all holomorphic characters of B. Namely, these characters
are completely determined by their restrictions to the torus T ⊂ B. These re-
strictions form the lattice T̂ = the Pontrjagin dual of T which in its turn can be
identified with the weight lattice P in h∗ via

χλ(expX) = e2π〈λ, X〉, λ ∈ P, X ∈ t.(3.2.3)

Conversely, every character (3.2.3) can be uniquely extended to a holomorphic
(non-unitary) character of B which is given by the same formula on H = TC and
is trivial on the commutator subgroup N = [B,B].

Thus, to any λ ∈ P there corresponds a character of the Borel subgroup B,
hence a homogeneous holomorphic line bundle on X which we denote by Lλ.

Theorem 1 (Borel–Weil). The space Γhol(Lλ) is non-zero exactly when λ ∈ P+

(P+ is the set of dominant weights) and in this case Γhol(Lλ) is an irreducible
representation πλ of G with highest weight λ.

The Borel–Weil theorem strongly suggests relating the representation πλ to the
integral coadjoint orbit Ωλ passing through iλ. In particular, the trivial represen-
tation π0 should correspond to the origin in g∗. This correspondence agrees with
rules 3 and 4 describing the restriction and induction functors. E.g., the set of all
weights of πλ, multiplied by i, coincides with p(Ωλ) ∩ iP where p is the canonical
projection of g∗ onto t∗. (See an example in 3.4.)

But there are even stronger arguments to associate πλ with the orbit Ωλ+ρ where
ρ is the half sum of the positive roots of the pair (gC, h). One of these arguments is
Bott’s complement to the Borel-Weil theorem. It deals with the space Hk(X, Lλ)
of k-dimensional cohomology of X with coefficients in the sheaf Lλ of germs of
holomorphic sections of Lλ. For k = 0 this reduces to the space Γhol(Lλ) which
appears in the Borel-Weil theorem.

Theorem 2 (Bott). The space Hk(X, Lλ) is non-zero exactly when

λ+ ρ = w(µ+ ρ) for some µ ∈ P+, w ∈ W and k = l(w), the length of w.
(3.1.2)

In this case the representation of G in Hk(X, Lλ) is equivalent to πµ.

This result suggests the correspondence πλ ↔ Ωλ+ρ which is a bijection between
Ĝ and the set of all integral orbits of maximal dimension.
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3.3. The integral formula for characters. Another and more visual argument
in favor of the correspondence πλ ↔ Ωλ+ρ is the equality

vol(Ωλ+ρ) = dimπλ(3.3.1)

which is in perfect agreement with the principle of quantization: the dimension
of the quantum phase space is equal to the volume of the classical phase space in
Planck units. (In short, one dimension per volume unit.)

The equality (3.3.1) follows from the integral formula (2.3.5) for characters (the
modified rule 6), which we shall discuss here in the context of compact groups. In
this case the character of a unirrep is a regular (even analytic) generalized function.
On the other hand, the factor 1

j(X) is defined only in the open subset E ⊂ g where
the exponential map is one-to-one.

Theorem 3. (see [K7]) For X ∈ E we have

tr πλ(expX) =
1

j(X)

∫
Ωλ+ρ

e2πi〈F,X〉 · σr, r =
dimG− rkG

2
.(3.3.2)

The equality (3.2.1) is just a particular case of this theorem when X = 0.
For the simplest case G = SU(2) the theorem was stated already in [K1]. But

only recently (see [KV], [WD]) the following remarkable property of the convolution
algebra on G which follows from the theorem was observed.

Consider the transform Φ : C∞(g)′ → C∞(G)′ defined by

〈Φ(ν), f〉 := 〈ν, j · (f ◦ exp)〉.(3.3.3)

Theorem 4. (see [WD]) For Ad G-invariant distributions the convolution opera-
tions on G and g (the latter considered as an abelian Lie group) are related by the
transform above:

Φ(µ) ∗G Φ(ν) = Φ(µ ∗g ν).(3.3.4)

So, the transform Φ “straightens” the group convolution, turning it into the
abelian convolution on g. This implies in particular the following remarkable geo-
metric fact.

Corollary. For any two (co)adjoint orbits O1, O2 ⊂ g the corresponding conjugacy
classes C1 = expO1, C2 = expO2 possess the property

C1 · C2 ⊂ exp(O1 +O2).

The analytic explanation of this geometric phenomenon can be given using the
property of Laplace operators, which we discuss below (see 6.1).

3.4. The multiplicity of a weight. One of the oldest (and most needed in
applications) question of representation theory of compact Lie groups is the question
of weight multiplicities. Given an irreducible representation πλ of G in the space
Vλ, one asks about the dimension mλ(µ) of the space

V µλ = {v ∈ Vλ| Hv = 〈µ, H〉v ∀H ∈ h}.(3.4.1)

There are several different formulae for this quantity, but no one of them is ef-
ficient enough. The orbit method, unfortunately, is no exception. The formula
suggested by this method is elegant, transparent, but (at least in its present form)
not practical.
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Example 4. To show the flavor of this problem, we consider the case G = SU(3).
Here the weight lattice is the usual triangular lattice in R2 generated by two funda-
mental weights ω1 and ω2. The multiplicity function mλ(µ) for two specific cases
λ = 4ω1 + 2ω2 and λ = 3ω1 + 3ω2 looks like

1 1 1 1 1 1 1 1 1
1 2 2 2 2 1 1 2 2 2 1

1 2 3 3 3 2 1 1 2 3 3 2 1
1 2 3 3 2 1 1 2 3 4 3 2 1
1 2 3 2 1 1 2 3 3 2 1

1 2 2 1 1 2 2 2 1
1 1 1 1 1 1 1

One can easily guess from these pictures the general recipe which is valid for any
unirrep of SU(3). Namely, the support of mλ(µ) is a convex hexagon whose vertices
form a W -orbit of the highest weight λ. The values of mλ(µ) along the perimeter
of the hexagon are equal to 1, on the next layer they are equal to 2 and continue
to grow linearly until the hexagonal layer degenerates to a regular triangle. Then
the growth stops (on the value min(k, l) + 1 for λ = kω1 + lω2).

For general compact groups it is also known that the support of mλ(µ) coincides
with the convex hull Πλ of the W -orbit of λ and that mλ(µ) is given by a piecewise
polynomial function. Moreover, the domains where the multiplicity is given by a
certain polynomial are known. They are bounded by hyperplanes

Hw,α = w(λ) + α⊥, w ∈W, α ∈ ∆+.(3.4.2)

On the other hand, it is known that the image of Ωλ under the canonical pro-
jection p : g∗ → t∗ coincides with the polytope iΠλ. Moreover, if we denote by S
the subset of those points of Ωλ where the projection is not a submersion, then the
image of S under p is the union of intersections iHw,α ∩ p(Ωλ). In other words,
the multiplicity formula changes its form exactly where the preimage p−1(x) can
change.

This suggests that the weight multiplicity mλ(µ) is related to the geometry of
the preimage p−1(iµ) ∩ Ωλ. It is indeed so, but only under the condition that we
replace Ωλ by Ωλ+ρ!

Namely, let Xµ
λ+ρ be the quotient of p−1(iµ)∩Ωλ+ρ by the action of the central-

izer of µ in G. This is the so-called reduced symplectic manifold (see [AG]). It
turns out that the most naive conjecture

mλ(µ) = vol Xµ
λ+ρ(3.4.3)

is “asymptotically true” (see [H]).
There is a vast literature around the more sophisticated forms of this conjecture

involving the Todd genus and the Riemann-Roch number of the manifold Xµ
λ+ρ.

We refer to [GS], [GLS] and to the papers quoted there. My personal impression is
that the right formula for multiplicities is still to be found.

3.5. Application to the symmetrization map. The integral formula (3.3.2)
and equality (3.3.4) together imply the modified rule 7, and the latter can be used
to get the explicit form of the isomorphism sym : Y (g)→ Z(g). We show it on the
simplest
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Example 5. Let G = SU(2), g = su(2) with the standard basis X, Y, Z and the
commutation relations

[X, Y ] = Z, [Y, Z] = X, [Z, X ] = Y.(3.5.1)

We denote by small letters x, y, z the same elements considered as coordinates on
g∗ and by α, β, γ the dual coordinates on g. Put also

r =
√
x2 + y2 + z2, ρ =

√
α2 + β2 + γ2.

It is clear that in our case Y (g) = C [r2] and Z(g) = C [C] where

C := X2 + Y 2 + Z2 = sym(r2) ∈ Z(g).

Unfortunately, the map sym : C[x, y, z] → U(g) is not easily computable even
when restricted to Y (g) = C [r2]. E.g. one can check that sym (r4) = C2 + 1

3C,23

but the direct computation of sym (r6) is already rather complicated. So we choose
the roundabout way based on the modified rule 7.

It is instructive to compare this problem with the computation of the various
symbols of differential operators (cf. [K2, §18, no. 2]).

The function j on g in our case takes the form

j(α, β, γ) =
(

det
(

sinh(ad(αX + βY + γZ)/2)
ad(αX + βY + γZ)/2

)) 1
2

=
sin(ρ/2)
ρ/2

= 1− ρ2

24
+ · · · .

(3.5.2)

Recall that we identify polynomials on g with differential operators with constant
coefficients on g∗, so that ρ2 goes to the operator ∆ = ∂2

x+∂2
y+∂2

z and the function
j corresponds to some differential operator of infinite order J .

Since the restriction of the operator ∆ to Y (g) is given by the simple expression
∆ = r−1 ◦ d2

dr2 ◦ r, we get

(JF )(r) = r−1 sin( 1
2
d
dr )

1
2
d
dr

(rF (r)) = F (r)− (rF (r))′′

24r
+ . . .

and, in particular,

Jr2 = r2 − 1
4
, J

sinh ar
ar

=
sin(a/2)
a/2

· sinh ar
ar

.(3.5.3)

The modified rule 7 implies that the map sym◦J restricted on Y (g) is an algebra
homomorphism; hence for any power series f we have

sym((Jf)(r2)) = f(sym(Jr2)) = f(C − 1
4
).(3.5.4)

So, from (3.5.3) we obtain

sym

(
sinh ar
ar

)
=

a/2
sin(a/2)

·
sin

(
a
√

1
4 − C

)
a
√

1
4 − C

.(3.5.5)

23In the lectures by Roger Godement on Lie groups this computation is accompanied by the
remark: “Resultat qui n’incite pas à pousser plus loin les investigations, encore que les physiciens
procedent tout les jours depuis le debut des années 30 à des calculs de ce genre.”



462 A. A. KIRILLOV

This gives the following explicit expression for the map sym : Y (g)→ Z(g):

sym(r2n) =
(−1)n−1

4n

n∑
k=0

(
2n+ 1

2k

)
B2k(4k − 2)(1− 4C)n−k(3.5.6)

where B2k are Bernoulli numbers.

3.6. Intertwining operators. Another question important in applications is the
structure of intertwining, or G-covariant operators between two representation
spaces. Many remarkable differential and integral operators can be interpreted (or
even defined) as intertwining operators. E.g. the Laplace operator

∆ =
n∑
i=1

(
∂

∂xi

)2

is an intertwining operator for the natural action of the Euclidean motion group in
any function space on Rn. Other examples are the Fourier and Radon transforms.

The big deficiency of the orbit method is that until now it helped very little in
the study of intertwining operators. (Though there is a beautiful formula for the
so called intertwining number of two representations in terms of the symplectic
geometry – see [GS].)

The reason is that a natural correspondence exists between orbits and equiv-
alence classes of unirreps rather than unirreps themselves. The construction of
an individual representation T from a given equivalence class defined by an orbit
Ω needs some arbitrary choice (e.g. the choice of a representative F ∈ Ω and a
subalgebra h subordinate to F ).

Recently a new approach to the representation theoretic study of special func-
tions was suggested in [EKJ] and developed in [EFK]. It requires a detailed de-
scription of intertwining operators for certain geometric representations of compact
groups. I consider as a very challenging problem the application of the orbit method
to these questions.

4. More troubles: Non compact semisimple groups

The systematic study of unirreps for non compact semisimple groups was started
independently by Gelfand and his school and by Harish-Chandra at the end of the
40’s, soon after the pioneering paper by Bargmann [Ba] on SL(2,R) and Gelfand-
Naimark [G] on SL(2,C).

They discovered that the set Ĝ of unirreps of a given semisimple group G splits
into different series. A posteriori these series can be related to different types of
(co)adjoint orbits, though the correspondence here is not so simple as for the case
of compact groups.

4.1. Principal and degenerate series. The principal series of representations
were defined first for complex semisimple groups and for those real semisimple
groups G which admit the so-called split Cartan subalgebra h ⊂ g (such that
hC is a Cartan subalgebra in gC and the roots of (gC, hC) take real values on
h). The series consists of representations which are induced from 1-dimensional
representations of the Borel subgroup B ⊃ H = exp h. So, in the real case they
form a continuous family depending on l = rkG parameters and have the functional
dimension r = #(∆+) = dim G−rkG

2 .
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The degenerate series arises when one replaces B by a parabolic subgroup
P ⊃ B. They have a functional dimension less than r and form a family depending
on less than l parameters.

All these series are in a perfect correspondence with the family of (co)adjoint
orbits which have a non-empty intersection with h. Moreover, for the principal
series the modified rule 6 (character formula) is valid in the domain E ⊂ g where
the exponential map is a diffeomorphism. (See [Du1] where a more general fact is
proved.)

But there is no way to extend this formula to the degenerate series (even for the
simplest non-trivial case g = SL(3, R)).

Example 1. Let G = SL(2, R). The space g∗ consists of matrices

f =
(

x y + z
y − z −x

)
= xX + yY + zZ.(4.1.1)

The center Z(g) of U(g) is generated by the element C = X2 + Y 2 − Z2. So, the
coadjoint orbits are one-sheeted hyperboloids Ωr : x2 +y2−z2 = r2 > 0, upper and
lower sheets of the two-sheeted hyperboloids Ω±ir : x2+y2−z2 = −r2 < 0, ±z > 0,
two sheets Ω± of the cone x2 + y2 = z2, ±z > 0 and the origin Ω0.

The principal series correspond to the family of one-sheeted hyperboloids Ωr. It
consists of representations Tr induced from a 1-dimensional representation of the
upper triangular subgroup B. Repeating the procedure described in Example 2 of
2.2, we get the explicit formula:[

Tr

(
a b
c d

)
f

]
(t) = f

(
at+ c

bt+ d

)
· |bt+ d|−1+2πir .(4.1.2)

Remark. In fact, the orbits Ωr are not simply connected. So to every such orbit
there corresponds a bunch of unirreps labelled by points of a circle group (dual to
π1(Ωr) ∼= Z). However, they are well defined only for the universal cover of G. For
G itself only two representations are single-valued: the one given by (4.1.2) and
another one with additional factor sign(bt + d). (And for the group PSL(2, R)
there remains only the representation (4.1.2).)

4.2. Discrete series. By definition, a unirrep π belongs to the discrete series
if it enters as a direct summand in the regular representation of G which acts in
L2(G, dg) by left shifts.

The well-known result of Harish-Chandra states that a real semisimple Lie group
G possesses a discrete series of unirreps iff it has a compact Cartan subgroup.

This fact can be easily explained (but not proved) by the orbit method. Indeed,
the generic coadjoint orbits split into families which are naturally labelled by the
conjugacy classes of Cartan subgroups. For a fixed Cartan subgroup H the cor-
responding family consists of orbits which intersect h = Lie(H) in a regular point
X . All such orbits are isomorphic as G-manifolds to the space G/H . The same
topological argument as we used in 3.1 shows that

b2(G/H) := dim H2(G/H, R) = dim Hc(4.2.1)

where Hc is a maximal compact subgroup in H .
So, the number of the integrality conditions is equal to dim Hc, while the total

number of parameters of an orbit from the given family is equal to dim H . It follows
that integral orbits form a discrete set iff dim H = dim Hc, i.e. when H = Hc.



464 A. A. KIRILLOV

Example 2. Historically the first example of discrete series was constructed in [Ba]
for G = SL(2, R). These representations T±ir correspond to the orbits Ω±ir and in
fact form a continuous family, but only those for which r ∈ Z\{0} are single-valued
on G. They are holomorphically induced from a 1-dimensional representation of
the maximal compact subgroup K ⊂ G and act by the formula[

Tn

(
a b
c d

)
f

]
(z) = f

(
az + c

bz + d

)
· (bz + d)−|n|, n ∈ Z\{0}(4.2.2)

in the space of holomorphic functions on the upper or lower half plane H± ∼= G/K
endowed with an appropriate inner product.

The important role of the series introduced above is that any unirrep which is
weakly contained24 in the regular representation R of G can be constructed as some
combination of them. Namely, let P be some parabolic subgroup with a semisimple
Levi subgroup S and a unipotent radical N . Suppose that S has a compact Cartan
subgroup and consequently possesses a discrete series of unirreps. Let π be one
of these unirreps, and denote by π̃ the corresponding representation of P (which
coincides with π on S and is trivial on N). Finally, put T = IndGP π̃.

Theorem 1 (Harish-Chandra). The procedure described above yields enough unir-
reps to decompose L2(G, dg) and prove the Plancherel formula.

Theorem 2 (Rossmann). For a reductive real Lie group the modified rule 6 holds
for the characters which occur in the Plancherel formula.

4.3. Complementary series. There is also a very interesting complementary
series of unirreps which are not weakly contained in R. They can be obtained from
the principal and degenerate series by analytic continuation. We shall speak more
about this phenomenon in 8.4.

Example 3. We use the same group G = SL(2, R) and define a representation
by the formula[

Ts

(
a b
c d

)
f

]
(t) = f

(
at+ c

bt+ d

)
· |bt+ d|−1−s, 0 < s < 1(4.3.1)

in the space of functions on P 1(R) with non-local inner product

(f1, f2) =
∫ ∞

−∞

∫ ∞

−∞
f1(t1)f2(t2) · |t1 − t2|s−1dt1dt2.

4.4. Metaplectic representation and its analogs. Every element X of a real
semisimple Lie algebra g can be uniquely written in the form

X = Xs +Xn, [Xs, Xn] = 0(4.4.1)

where Xs is ad-semisimple and Xn is ad-nilpotent (that is, the operator adXs can
be diagonalized and (adXn)k = 0 for some k). Accordingly, the general (co)adjoint
orbit ΩX ⊂ g∗ can be fibered over the semisimple orbit ΩXs ⊂ g∗ with the fiber a
nilpotent orbit ωXn ⊂ stab(Xs)∗.

The unirreps of the principal, discrete and degenerate series are related to
semisimple orbits, while the nilpotent orbits correspond to some (if any) excep-
tional representations which are called unipotent. In particular, an important
example of a nilpotent orbit arises when g is a simple complex Lie algebra, ψ is

24In the sense of Fell [F]; see also [K2].
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a maximal root and we consider the orbit Ωψ which goes through a root vector
Eψ ∈ g; Ωψ is called the minimal coadjoint orbit for g. In the real situation,
when g is a split real simple algebra, there could be several minimal coadjoint orbits.

We consider here the most interesting case when g = sp(2n, R) is the real
symplectic Lie algebra. It consists of matrices X satisfying

XtJ + JX = 0

where J = −J t is a skew-symmetric non-degenerate matrix (the matrix of the
symplectic form on R2n). This Lie algebra as a vector space and as a g-module can
be identified with the space Sym2(R2n) of all real symmetric matrices of order 2n
via the map

sp(2n, R) 3 X 7→ JX ∈ Sym2(R2n).(4.4.2)

Among the non-zero Sp(2n, R)-orbits in Sym2(R2n) there are two orbits Ω± of the
minimal possible dimension 2n; they consist of symmetric matrices of rank 1 which
are non-positive or non-negative. These orbits are exactly the minimal coadjoint
orbits for g.

The usual methods of constructing a unirrep from an orbit do not work in this
case: there is no appropriate subalgebra either in g or in its complexification. But
we can use an indirect way to show that these orbits correspond to the famous
Segal-Shale-Weil (or oscillator) representation of Sp(2n, R) (see e.g. [K5]). In
fact, it is a projective representation which is a genuine linear representation of the
double cover of Sp(2n, R), the so-called metaplectic group Mp(2n, R).

Consider the so-called triangular symplectic group TSp(2n + 2, R) which
is by definition the stabilizer of a point for the natural action of Sp(2n + 2, R)
on R2n+2.25 We realize the Lie algebra sp(2n + 2, R) as the space of matrices A
satisfying

At ·
 0 0 1

0 J 0
−1 0 0

 +

 0 0 1
0 J 0
−1 0 0

 ·A = 0

which implies

A =

 a yt z
Jq X Jy
r −qt −a

 where XtJ + JX = 0, i.e. X ∈ sp(2n, R).(4.4.3)

The Lie subalgebra tsp(2n + 2, R) = stab(0, 0, 1) is defined by the conditions
a = 0, q = 0, r = 0. Hence, it is a semidirect product of a subalgebra sp(2n, R) and
a nilpotent normal subalgebra hn of dimension 2n+1 — the so-called Heisenberg
algebra. Correspondingly, TSp(2n+ 2, R) is a semidirect product of a subgroup
Sp(2n, R) and a nilpotent normal subgroup Hn.

Let us identify as usual sp(2n+ 2, R) with its dual. Then tsp(2n+ 2, R)∗ will
consist of matrices

F =

 0 0 0
Jq X 0
r −qt 0

 where X ∈ sp(2n, R).(4.4.4)

25This is one of several candidates for the role of the “odd symplectic group” Sp(2n + 1, R).
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There is a family of coadjoint orbits Ωh which have the minimal dimension 2n,
depend on a real non-zero parameter h and are defined by the equations:

r = h, JX = qh−1qt.(4.4.5)

They possess the following geometric properties.
1. Under the natural projection on h∗n the orbit Ωh goes to the orbit which

corresponds to the unirrep Vh of the Heisenberg group Hn (cf. Example 3 in 2.2
where the case n = 1 is discussed).

2. Under the projection on sp(2n, R)∗ the orbit Ωh goes to Ωsign (h).
According to rule 3 of the User’s Guide this means that there should exist a unir-

rep πh, h ∈ R\{0}, of TSp(2n+ 2, R) (or its universal cover) with the properties:

ResTSp(2n+2, R)
Hn

πh ≈ Vh, ResTSp(2n+2, R)
Sp(2n+2, R) πh ≈ πsign (h)

where π± are some unirreps of Sp(2n, R) (or its universal cover) corresponding to
the orbits Ω± ∈ sp(2n, R)∗.

The reality is, however, slightly different from this picture. Namely, the represen-
tation space of Vh admits a unique unitary action πh of the so-called metaplectic
group Mp(2n, R), a double cover of Sp(2n, R), so that we get a representation of
the semidirect product Mp(2n, R) nHn. The equivalence class of πh does indeed
depend only on sign (h), but the resulting equivalence classes π± are reducible!
They split into two irreducible components.

Example 4. Let n=1. The Lie algebra tsp(4, R) consists of matrices

M =


0 −y x z
0 a b x
0 c −a y
0 0 0 0

 = aA+ bB + cC + xX + yY + zZ

where the basic elements satisfy

[X,Y ] = 2Z, [A,B] = 2B, [A,C] = −2C, [B,C] = A,

[A,X ] = X, [A.Y ] = −Y, [B, Y ] = X, [C,X ] = Y,
(4.4.6)

the other commutator being zero.
Recall that the representation Vh sends the generators of h1 to the operators

Vh(X) =
d

dt
, Vh(Y ) = 2iht, Vh(Z) = ih.

From the commutation relations (4.4.6) we derive that

πh(A) = −t d
dt
− 1

2
, πh(B) =

1
4ih

d2

dt2
, πh(C) = −iht2.(4.4.7)

In particular, we get

πh(exp θ(B − C))φ0 = ei
θ
2φ0, φ0(t) = e−|h|t

2

which shows that πh is well defined only on the double cover of Sp(2, R).
We see also that the equivalence class of πh depends only on the sign of h and

that subspaces of even and odd functions are invariant under all operators (4.4.7).
More detailed study shows that these subspaces are irreducible, so we get four
oscillator unirreps.

The oscillator representations play quite a remarkable role in all of representation
theory. Here we note only two of their features:
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1. They form the base of the so-called Howe duality (see [Ho2]) – a new branch
of representation theory where the orbit method has not yet been used to the fullest.

2. They enter in the construction of a unirrep from an orbit suggested in [Du3]
which is based on the embedding of StabF in Sp(TFΩ, σ) and leads to a notion of
admissible data which is a modification of the rigged momenta introduced in 2.4.

The thorough study of minimal orbits and associated representations is now in
progress (see [BK], [V]), but it is too early to describe it here.

5. Beyond the Lie groups

One of the merits of the orbit method is that it could be applied not only for the
Lie groups in the classical sense. Indeed, the key notion of coadjoint orbit makes
sense whenever the cotangent space is defined. In particular, this is the case if the
group G in question is an algebraic group over any field K. Another possibility is to
consider groups whose underlying sets have the structure of an infinite dimensional
manifold. And, finally, one can consider quantum groups which are not groups at all
but still have analogs of tangent and cotangent spaces (which are dual Poisson-Lie
groups). In this chapter we discuss these aspects of the orbit method.

5.1. p-adic and adelic groups. The invention of p-adic fields and rings of adeles
brought into number theory powerful new methods, including global, functional
and harmonic analysis. This caused tremendous progress, resulting recently in
the proof of the Taniyama-Weil conjecture and, as a corollary, Fermat’s Last The-
orem.26

This is not the place to explain these notions in full detail. Recall only that by a
global field K one usually understands either an algebraic number field which
is a finite extension of Q or a function field which is a finite extension of Fq(t)
where Fq is a finite field with q elements.

A local field Kp is the completion of a global field K with respect to some norm
|| · ||p satisfying

||x+ y||p ≤ ||x||p + ||y||p, ||xy||p = ||x||p||y||p.(5.1.1)

It could be R, C or some non-archimedian field in which the triangle inequality
from (5.1.1) is replaced by the ultrametric inequality

||x+ y||p ≤ min(||x||p, ||y||p).(5.1.1′)

The adelic ring A(K) is the restricted topological product of all local fields
associated with K. The characteristic property of this topological ring is the self-
duality (in the Pontriagin sense) of the exact sequence:

0→ K → A(K)→ A(K)/K → 0(5.1.2)

where K is considered as a discrete topological group.27

In my talk at the Moscow ICM (1966) it was shown that the ideology of the
orbit method still works for some p-adic and adelic Lie groups. For groups of
this type some theorems can be proved mutatis mutandum. E.g., the theory of

26It is remarkable that the Taniyama-Weil conjecture can be formulated in representation-
theoretic language (in terms of two-dimensional p-adic representations of the Galois group
Gal(Q̄/Q) related to elliptic curves), but this question is beyond the usual scope of representation
theory.

27The well known example of a self-dual sequence is 0 → Z → R → R/Z → 0. It is helpful to
keep in mind the analogy between the two sequences.



468 A. A. KIRILLOV

unitary representations of nilpotent groups over a local field of characteristic zero is
completely parallel to the real case. For groups over the adele rings A(K) where K
is an algebraic number field, the situation is more delicate: these groups are usually
“wild” (i.e. do not belong to type I in the sense of von Neumann). But still the
ideology of the orbit method works nicely and gives a simple description of most
important unirreps. The point is that the additive groups of Qp and A(K) are self
dual in the Pontriagin sense. So, one has natural candidates for the space g∗ and
the coadjoint orbits.

Some propositions suggested by the orbit method remain true in p-adic or adelic
situations but require different proofs. The most brilliant example is the decom-
position of the space L2(GA(Q)/GQ) for “nice” algebraic groups G. In the case of
semisimple groups it is the main object of the Langlands program.

The ideology of the orbit method suggests that the spectrum of L2(GA(Q)/GQ)
should consist of unirreps corresponding to those orbits in g∗(A(Q)) which have
nonempty intersection with g(Q)⊥ = g∗(Q) ⊂ g∗(A(Q)). And in the case of nilpo-
tent groups this is indeed the case, as is shown in [M], [Ho1]. Even the traditionally
hard question about multiplicities in this case can be almost solved in terms of
orbits.

As another example of the heuristic power of the orbit method (which is not
however reinforced by a rigorously proved theorem) I want to quote one question I
was recently asked by I. Piatetsky-Shapiro. LetK be a non-discrete locally compact
field of characteristic 0. Then K is self-dual. More precisely, if we fix a non-trivial
additive character χ, then the general character has the form χa(x) := χ(ax).

Consider the group G = GL(2n,K) and the subgroup H of matrices of the form:(
A B
0 A

)
, where A ∈ GL(n,K), B ∈ Matn(K).(5.1.3)

One easily checks that the map
(
A B
0 A

)
→ tr(A−1B) is a group homomorphism.

For any a ∈ K let’s define the representation Ta of G by

Ta := IndGH χa(tr(A−1B)).(5.1.4)

Question. Is it true that all representations of G which occur in the spectrum of
Ta for a 6= 0 are self-dual?

Let’s translate this question into orbit language. According to rule 8 of the
User’s Guide self-dual representations are associated to orbits with the property
Ω = −Ω. As usual, we identify g∗ with g via the pairing 〈F,X〉 = tr(FX) and the

space h∗ with the space of matrices of the form
(
A 0
B A

)
. Then, according to rule

4, the spectrum of Ta consists of representations associated to those orbits in g∗

whose projection to h∗ contains the point

Fa =
(

0 0
a · 1 0

)
∈ h∗.(5.1.5)

It is clear that the preimage of Fa is the set of matrices of the form(
X Y
a · 1 −X

)
, where X,Y ∈Matn(K).(5.1.6)

So, a positive answer to the question above corresponds to the following statement
about matrices.
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Proposition 1. For any X,Y ∈ Matn(K) and any non-zero a ∈ K the matrices(
X Y
a · 1 −X

)
and

( −X −Y
−a · 1 X

)
are similar, i.e. belong to the same conjugacy

class in Mat2n(K).

Proof. Direct verification that the conjugation by the matrix
(−1 2X/a

0 1

)
indeed

does the trick.

I remind you that this “answer” to the above question has only a heuristic value,
because for reductive groups over local fields the relation between coadjoint orbits
and unirreps is far from clear. It was a pleasure for me to know that this “answer”
was confirmed and the corresponding theorem is now proved.

5.2. Finite groups. The application of the orbit method to representation of
finite groups is based on the possibility of considering some finite groups as groups
of Fq-points of an algebraic group G defined, say, over Z.

In the last few years I have tried to understand the simplest case where G = Gn
is the group of upper unitriangular matrices of order n. This has led me to some
very interesting combinatorial and number-theoretic problems. I refer to the papers
[K6] and [KM] for details and mention here only two problems.

1. Is it true that any upper unitriangular n × n matrix with elements from
Fq, q = 2l, is conjugate to its inverse in the group Gn? As I learned recently, it has
been checked to be true up to n = 12, and a counterexample has been announced
for n = 13, q = 2; see [I].

This example contradicts the “naive” character formula conjectured in [K6] but
still leaves a hope that there is a correspondence between unirreps and coadjoint
orbits for Gn(Fq) such that dimπΩ =

√
#Ω.

Define the ζ-function of a compact group G as

ζG(s) =
∑
λ∈Ĝ

d(λ)−s,(5.2.1)

where d(λ) = dimπλ. For a finite group this is an exponential polynomial in s with

ζG(−2) = #G, ζG(0) = #Ĝ.(5.2.2)

In the case of Gn(Fq) the conjecture above is equivalent to the following relation
between ζGn(Fq)(s) and the number On,m(q) of 2m-dimensional coadjoint orbits for
Gn(Fq):

ζGn(Fq)(s) =
∑
m

On,m(q) · q−ms.(5.2.3)

It is supported by the fact that the number of unirreps is equal to the number of
coadjoint orbits and the sum of squares of their dimensions is equal to #Gn(Fq).
So, (5.2.3) is true at least for s = 0 and –2.

2. The remarkable fact is that the right hand side of (5.2.3) can be considered
as a partition function for some peculiar lattice model on g∗n(Fq) where rkBF plays
the role of the energy function and −s is the analog of the inverse temperature
β = 1

kT . Still more interesting is the fact that for s = 2 − 2r, an even negative
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integer, this partition function can be written in the form

ζGn(Fq)(2− 2r) = q−rn(n−1) ·
∑
X,Y,F

θ(〈F, [X,Y ]〉),(5.2.4)

where X,Y run through gn(Fqr ), F runs through g∗n(Fq) naturally embedded in
g∗n(Fqr ) and θ is any non-trivial additive character of Fqr . So, the algebraic version
of the inverse temperature is the degree of the extension of a finite field!

5.3. Infinite dimensional groups.

5.3.1 General remarks. There are practically no general theorems in this part of
representation theory. But for some specific cases beautiful and deep results have
been obtained (see e.g. the books [Is], [Ka], [PS] and [N]). So, this is a natural
domain for the application of the orbit method as was suggested already in [K2]
and more thoroughly in my talk presented to the Helsinki ICM (1978).28

For the most important examples of infinite dimensional Lie groups the descrip-
tion of coadjoint orbits and their geometry is a very interesting and non-trivial
problem which is usually connected (or even coincides) with some classical prob-
lems of global analysis and geometry. I refer to my lectures [K4] where several
examples are described in detail.

5.3.2 Affine Lie algebras and loop groups. Let K be a connected compact Lie group.
The set LK = C∞(S1, K) of all smooth mappings of the circle S1 to K is an
infinite dimensional Lie group (with pointwise multiplication of functions). The
corresponding Lie algebra is the space Lk = C∞(S1, k) where k =Lie(K) is the Lie
algebra of K. The algebraic versions of this notion arise when we replace smooth
functions on S1 by trigonometric polynomials.

We adopt some assumptions, facts and notations from 3.1. In particular, we
suppose that K is simply connected and k = Lie(K) is simple. We fix an Ad-
invariant scalar product 〈 , 〉 on k normalized by the condition that the maximal
root ψ satisfies 〈ψ, ψ〉 = 2. The group LK has a non-trivial central extension L̃K
by a circle group T1. Moreover, the circle group of rotations of S1 acts on LK by
outer automorphisms, and this action can be extended to L̃K. Thus, we get the
group

G = L̂K = T1 n L̃K.

The corresponding Lie algebra has the form

g = L̂k = R ·D ⊕ R[cos t, sin t]⊗ k⊕ R · C
so that an element of g is a triple (α, X, β) where α and β are real numbers and
X : S1 → k is a map given in coordinates by trigonometric polynomials.

The commutation relations are
[(α1, X1, β1), (α2, X2, β)] =(0,−α2X

′
1 + α1X

′
2 + [X1, X2],

1
2π

∫ 2π

0

〈X ′
1, X2〉dt).

(5.3.1)

It is called real affine algebra (or real Kac-Moody algebra of affine type).

28For a political reason I was not allowed to go to the Congress (as many other Soviet math-
ematicians), so I missed the opportunity to discuss my ideas with Western mathematicians who
became interested in infinite dimensional groups at the same time.
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Affine algebras share many properties of simple finite dimensional Lie algebras.
E.g. they possess an Ad-invariant bilinear form B given by

B((α1, X1, β1), (α2, X2, β)) = α1β2 + α2β1 +
1
2π

∫ 2π

0

〈X1, X2〉dt.(5.3.2)

One can associate to such an algebra an infinite root system, define the correspond-
ing affine Weyl group and construct a series of so-called integrable irreducible
representations labelled by dominant weights. We refer to [Ka] and [PS] for the
detailed exposition of this theory.

All this has a nice interpretation in terms of coadjoint orbits. We give here the
outline of this approach including the integral formula for the generalized characters
(rule 6) which has been obtained in [Fr] and looks like a functional integral over
the corresponding infinite dimensional orbit.

We start with the descriptions of coadjoint orbits. Using the invariant form
(5.3.2) we can identify g with a part of g∗29 and consider the adjoint orbits. The
center of L̂K acts trivially. So, it is enough to consider the action of the group
T1 n LK on g.

Theorem 1. ([Fr], [PS]) The action of LK on g has the form

Ad(g)(α, X, β) = (α, g Xg−1 − αY, β + 〈X, Y 〉 − α

2
〈Y, Y 〉)(5.3.3)

where Y = g ′g−1.

This formula has several important implications.
1. The quantity α is preserved. It is called the central charge of the orbit and,

as we shall see soon, the integrality condition requires it to be an integer.
2. A momentum (α, X, β) with X = const is invariant under the rotation

group; hence its LK-orbit coincides with G-orbit.
3. The orbits behave differently depending on whether the central charge van-

ishes or not. In the former case they are just loops in the space O(G) of G-orbits in
g and have infinite codimension; in the latter case they are surfaces of codimension
2+l where l = rk K (see below).

4. The stabilizer of a point (α, X, β) with α 6= 0 and X = const ∈ treg is
T× T × T. So, there are 2+l integrality conditions.

Now, the description of orbits is given in two steps.

Proposition 2. Any G-orbit with non-zero central charge meets the subspace g0 ⊂
g given by the condition X = const.

Proof. It follows from Floquet theory of systems of ordinary differential equations
with periodic coefficients.

Let T ∼= Tl be a maximal torus in K, t its Lie algebra, Q∨ = 1
2πi (exp−1(e)∩ t) the

coroot lattice in it, W = NK(T )/T the ordinary Weyl group and Waff the affine
Weyl group, i.e. the semi-direct product of W and Q∨. Waff acts naturally on t by
affine transformations: (w, γ) ·X = w(X) + 2πiγ. We denote by S a fundamental
domain for Waff in t. The standard coordinates on t are xk(X) = 2〈X,αk〉

i〈αk,αk〉 where

29In the finite dimensional case the existence of an invariant form implies an isomorphism
g ∼= g∗. In the infinite dimensional situation g∗ is much larger than g, but, fortunately, the most
interesting orbits usually lie inside g.
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αk, 1 ≤ k ≤ l, are the simple roots of (kC, tC). In these coordinates S can be
chosen as the simplex given by the inequalities

xk ≥ 0, 1 ≤ k ≤ l,
l∑
i=0

akxk ≤ 1

where ai are the coefficients of the decomposition of the maximal root ψ into linear
combination of simple roots: ψ =

∑l
i=0 akαk.

Proposition 3. Any LK-orbit with non-zero central charge α contains a unique
point F = (a, Y, b) with Y = const ∈ aS.

Proof. It follows from the study of the coadjoint action of g = exp(X) ∈ LK where
X(t) is a linear function of the form X(t) = X0 + t ·X1(t) where X1 ∈ Q∨.

In fact, the integrality conditions imply that a, b ∈ Z, Y ∈ P (or, equivalently,
yk = 2〈Y,αk〉

i〈αk,αk〉 ∈ Z) that leaves for F a finite number of possibilities for any given
a ∈ Z. Actually, one can establish a one-to-one correspondence between integral
orbits with positive central charge and dominant weights of g (hence, with integrable
unirreps of L̂K).

Let ΩΛ denote the orbit which contains iΛ ∈ g ⊂ g∗. As in the compact case,
if we want a variant of rule 6 to hold, we have to associate a unirrep πΛ with the
highest weight Λ to the orbit ΩΛ+ρ̃ where ρ̃ is the analog of the half sum of positive
roots for the affine algebra g.

The infinite-dimensional variant of rule 6 looks exactly like the usual one,

tr πΛ(exp X ) =
1

j(X )

∫
ΩΛ+ρ̃

e2πi〈X , F〉dF ,(5.3.4)

but needs much more explanation.
Here X = (α, X, β) is supposed to be an element of g while Λ = (k, λ, n) with

k ∈ Z+, λ ∈ P+, n ∈ Z, ρ̃ = (1
2D, ρ, 0) and F = (a, Y, b) = Adg (Λ + ρ̃) belong

to g considered as a part of g∗.
In this case both sides of (5.3.4) taken literally do not make sense. But the point

is that one can consider the continuation of the representation πΛ to an open domain
in exp gC defined by =α > 0. Representation operators in the LHS then become
operators of the trace class. As for the RHS, the symplectic volume dF also does
not make sense in the infinite-dimensional situation. But the expression e2πi〈X , F〉

has a factor e−π=α||Y ||
2
, and the product e−π=α||Y ||

2
dF can be interpreted as a

Gaussian measure on the orbit which comes from a conditional Wiener measure on
the space of paths in g with a given endpoint.

Finally, the function j(X ) here, as in the case of a compact group G, is closely
related to the denominator of the Kac-Weyl character formula.

5.3.3 Virasoro algebra and Virasoro-Bott group. One of the challenging problems is
to explain the rather complicated structure of the discrete series of unitary represen-
tations of the Virasoro-Bott group Vir, the central extension of Diff+(S1), in terms
of Kähler geometry of coadjoint orbits. An attempt to do it “on a physical level”
was made in [AS], but the problem of translation of this result into mathematical
language is still open.

We recall here the basic facts concerning the beautiful geometry of coadjoint
orbits for Vir. An open domain in the space vir∗ is covered by the orbits which are
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equivalent as a homogeneous space to the coset space M = Diff+(S1)/RotS1. This
space has an invariant complex structure and can be described as follows.

Let D+ := {z ∈ C
∣∣ |z| ≤ 1}, and let F denote the space of all holomorphic

functions f on D+ which are univalent,30 smooth up to boundary and normalized
by the conditions f(0) = 0, f ′(0) = 1.

So, if we write

f(z) = z ·
1 +

∑
n≥1

cnz
n

 ,(5.3.5)

we can consider {cn} as coordinates on F which provide an embedding of this
infinite dimensional manifold into C∞.31

In fact, a function f ∈ F is uniquely defined by the simple smooth contour
K = f(S1). The set K of all such contours can be considered as a geometric
realization of F . It consists of all contours K around the origin such that the
conformal radius of K with respect to the origin is equal to 1 (the last requirement
is simply a reformulation of the second normalization condition above).

The group G = Diff+(S1) acts on F by holomorphic transformations. Unfortu-
nately, it is impossible to write down this action explicitly because the construction
uses the Riemann uniformization theorem which gives no explicit formula. The
only exception is the action of the rotation subgroup. It is given by

(rαf)(z) = e−iαf(eiαz) or rαcn = einαcn.

So, the stabilizer of the point f0(z) = z coincides with the rotation subgroup and
F ∼= M as homogeneous G-manifolds.

The corresponding infinitesimal action can be described explicitly.

Theorem 2. ([KY]) For any v = v(t) ddt ∈ V ect S1 the corresponding Lv ∈ V ect F
is given by

Lv(f)(z) =
f2(z)
2π

∮
S1

(
tf ′(t)
f(t)

)2

· v(t)
(f(t)− f(z))

· dt
t
.(5.3.6)

The action of Diff+(S1) on F defines a two-parameter series of representations
of the Lie algebra vir = V ect(S1) ∝ R in the space of analytic functions on F by
differential operators of the first order:

(Tc,h(v, a)F )(f) = {[Lv(f) + Φc,h(v, f) + ac]F}(f)(5.3.7)

where Φ(v, f) is linear in c, h and v ∈ C∞(S1) is analytic in f ∈ F and satisfies

Lv1Φc,h(v2, f)− Lv2Φc,h(v1, f) = Φc,h(v1v′2 − v2v′1, f) +
c

12
·
∫
S1
v1v

′′′
2 .

Proposition 4. ([K8]) The explicit formula for Φc,h(v, f) has the form

Φc,h(v, f) =
∮
S1

[h
(
tf ′(t)
f(t)

)2

+
ct2

12
S(f)] · v(t)dt

t
(5.3.8)

30Univalent means that f(z1) 6= f(z2) for z1 6= z2.
31The famous De Branges’ Theorem (formerly the Bieberbach Conjecture) shows that the

image in fact lies in the bounded domain |cn| < n + 1, for n ≥ 1.
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where S(f) = f ′′′

f ′ − 3
2

(
f ′′

f ′

)2

is the so-called Schwarzian derivative of f .32

Recall now some known fact from the representation theory of the algebra vir
(see [Ka], [N]). Let Lc, h be the irreducible highest weight module over vir. It is
called unitarizable if one can define an inner product on it s.t. L∗n = L−n and the
vacuum vector x0 has the length 1. Such a product is unique and exists in the
following cases:

a) c ≥ 1, h ≥ 0;
b) c = 1− 6

m(m+1) , h = hp,q,m = (mp+p−mq)2−1
4m(m+1) ,

where m = 2, 3, 4, · · · , 0 < q ≤ p < m.
In the first case Lc, h coincides with the Verma module Vc,h, while in the second

case it is the quotient of Vc, h by a non-trivial submodule consisting of vectors
of zero length. This submodule is generated by the so-called singular vectors
annihilated by all Lk, k > 0, and different from the vacuum vector. The first
singular vector is on the pq-th level.

The simplest (and most trivial) example is m = 2 where p = q = 1, c = h = 0
and L0,0 is a trivial one dimensional module. It is realized in the one dimensional
space of constant functions on F .

Consider in more detail the first non-trivial case m = 3. Here c = 1
2 , h =

0, 1
2 , or 1

16 and the singular vectors are respectively on the first, second and fourth
levels.

For h = 0 the singular vector is just L−1x0. Moreover, the basis in L 1
2 ,0

consists
of vectors of the form

L−k1L−k2 · · ·L−krx0, ki ≥ 2.

The geometric realization of this space has a simple description: it consists
exactly of functions on F which are constant along the leaves of a G-invariant
foliation of F . For all other cases the geometric description of Lc, h is unknown.

5.3.4. Moduli space of flat G-bundles and representations of the Teichmüller group.
One more source of symplectic manifolds was discovered recently (see [AB]). It
is the moduli space M(G, Σ) of flat connections in principal G-bundles over a
2-dimensional oriented manifold Σ (Riemann surface). The symplectic structure
on this space arises as a result of symplectic reduction (see 7.1) from the space
A(G, Σ) of all connections with the symplectic structure defined geometrically

σ(A1, A2) =
∫

Σ

(A1 ∧ A2).(5.3.9)

Here the bilinear operation (A1 ∧ A2) is constructed from the invariant bilinear
form on g = Lie(G) and the exterior product of differential forms on Σ.

The space M(G, Σ) is almost compact (its compactification differs from the
initial space by a submanifold of large codimension) and possesses a Kähler struc-
ture which depends on the complex structure on Σ. The geometric quantization of
M(G, Σ) is a very interesting problem closely related with modern mathematical
physics on one side and with values of the group ζ-functions in integer points on
the other (See [W2], [Za]).

32The Schwarzian derivative was introduced in 1869 by H.A. Schwarz in complex analysis
and recently found new applications in the theory of one-dimensional dynamical systems (see e.g.
[De]).
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Though this example leads to a finite dimensional quantum space (the volume of
M(G, Σ) is finite), the construction depends heavily on infinite dimensional con-
siderations. (See, however, [FR] for finite dimensional treatment of this example.)

5.4. Quantum groups and Poisson-Lie groups.

5.4.1. Discrete versions of analysis. There are two different ways to make the real
line R discrete: replace it by h ·Z (an infinite arithmetic progression with difference
h) or by qZ (an infinite geometric progression with ratio q). Correspondingly, there
are two ways to replace the differential operator d

dx by a difference operator:

(Dadd
h f)(x) :=

f(x+ h)− f(x)
h

(or, symmetrically,
f(x+ h)− f(x− h)

2h
).

This way goes back to Euler and leads to the beautiful calculus of finite differences.
The second way goes back to Gauss and plays a basic role in the theory of quan-

tum groups. Here the differential operator d
dx is replaced by a difference operator:

(Dmult
q f)(x) :=

f(qx)− f(x)
qx− x (or, symmetrically,

f(qx)− f(q−1x)
qx− q−1x

).(5.4.1)

If we denote by Tq the operator of dilation by q, then the symmetric version of
Dmult
q can be written as

Dmult
q = x−1 · Tq − T

−1
q

q − q−1
.(5.4.2)

The obvious commutation relation Tq · x = qx · Tq implies the relations

x ·Dmult
q =

Tq − T−1
q

q − q−1
, Dmult

q · x =
qTq − q−1T−1

q

q − q−1
.

5.4.2 Quantum groups. There are already about ten books devoted to the exposition
of this very fashionable subject, and I have no wish to compete with them. But I
want to express here my own point of view on the appearance of quantum groups.

We start with the classical Lie algebra gl(n,R). This algebra can be realized by
differential operators of the form

∑n
i,j=1 ai,jxi∂j and has the natural basis

ei,j = xi∂j , 1 ≤ i, j ≤ n.
Define the discrete analog of these operators by

Ei,j = xiDj, 1 ≤ i, j ≤ n,
where Dj is the operator Dmult

q w.r.t. the variable xj .
The linear span of operators Ei,j is no longer a Lie algebra. To describe the

commutation properties of the resulting set of operators we consider the basic
operators

Ei := Ei,i+1, Fi := Ei+1,i, 1 ≤ i ≤ n− 1.

Their classical prototypes {ei, fi, 1 ≤ i ≤ n−1} generate the Lie algebra sl(n,R)
and satisfy the relations:

[ei, ej ] = [fi, fj ] = 0 for |i − j| ≥ 2, [ei, fj] = δi,jhi

(adei)2ej = e2i ej − 2eiejei + eje
2
i = 0, (adfi)2fj = f2

i fj − 2fifjfi + fjf
2
i = 0

(5.4.3)

where hi = ei,i − ei+1,i+1, 1 ≤ i ≤ n− 1.
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The corresponding discrete operators {Ei, Fi, 1 ≤ i ≤ n − 1} satisfy the
q-analog of these relations:

[Ei, Ej ] = [Fi, Fj ] = 0 for |i − j| ≥ 2, [Ei, Fj ] = δi,j
Ki −K−1

i

q − q−1

E2
i Ej + EjE

2
i = (q + q−1)EiEjEi, F 2

i Fj + FjF
2
i = (q + q−1)FiFjFi

(5.4.4)

whereKi = Ti/Ti+1 and Ti is the dilation operator with respect to the i-th variable.
One can easily check that these quantum relations become the classical ones when
q = 1.

The associative algebra Uq(sl(n,R)) is by definition generated by the elements
Ei, Fi, Ki, K

−1
i , 1 ≤ i ≤ n, satisfying the relations above. It is called the

quantum analog of the universal enveloping algebra U(sl(n,R)).
The main property of an enveloping algebra of a Lie algebra g is that it is a

variant of the group algebra for the corresponding Lie group G. Namely, it is the
space of all distributions on the group with support {e}. As such it possesses an
additional algebraic structure, the comultiplication

∆ : U(g)⊗ U(g)→ U(g)

which is dual to the multiplication of test functions on G.
It turns out that Uq(sl(n,R)) also admits a comultiplication which looks like

∆Ei = Ei ⊗ 1 +Ki ⊗ Ei, ∆Fi = Fi ⊗K−1
i + 1⊗ Fi.(5.4.5)

This operation is not cocommutative, which means that the function algebra on a
quantum group should be non-commutative. So, quantum groups have no points
in the usual sense and cannot be considered as sets. But still the analogy with
ordinary groups is rather useful and suggestive.

5.4.3 Poisson-Lie groups. Here we introduce the notion which replaces the space
g∗ in the quantum case.

The first approximation to a quantum group is a so-called Poisson-Lie group
which is an ordinary Lie group G with an additional structure: the Poisson brackets
in the space of functions on G. It arises when we consider the (non-commutative)
multiplication in the function algebra on a quantum group as a deformation of the
ordinary multiplication in the function algebra on G.

Namely, this deformation has the form

f ◦ g = fg + h{f, g}+ o(h),

where h is the deformation parameter (considered either as a real number or as
a formal variable) and { , } is the Poisson bracket on G compatible with group
multiplication.

In terms of the corresponding bivector c compatibility means

c(xy) = L∗xc(y) +R∗yc(x),

where Lx, Ry are the operators of left and right shifts on G. It follows that c
vanishes at the unit element e ∈ G and is completely determined by its first order
jet at e. The latter gives a Lie algebra structure [ , ]∗ on the space T ∗e (G) = g∗.

Proposition 5. The two Lie algebras g and g∗ satisfy in turn a compatibility con-
dition which can be formulated in three equivalent ways:

a) ϕ : g∗ → g∗ × g∗ is a 1-cocycle on g∗ with values in ∧2g∗ (here ϕ is the map
dual to the commutator in g);
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b) ψ : g→ g× g is a 1-cocycle on g with values in ∧2g (here ψ is the map dual
to the commutator in g∗);

c) the space a := g⊕ g∗ has a Lie algebra structure which preserves the natural
symmetric bilinear form on a and extends the Lie algebra structures on g and g∗

given above.

The last formulation suggested by Yu. I. Manin is the most convenient one. The
data (a, g, g∗) has the name of

Manin triple. The category of Manin triples is naturally isomorphic to the cate-
gory of simply connected Poisson-Lie groups.

We see that g and g∗ play symmetric roles in the definition of a Manin triple.
It follows that to every simply connected Poisson-Lie group G there corresponds a
dual Poisson-Lie group G∗.

5.4.4. Quantum version of the orbit method. The relation between the notion of
Poisson-Lie group and the orbit method is based on the following simple observa-
tion.

Proposition 5. Let G be a Lie group with the trivial (zero) Poisson bracket. Then
the dual Poisson-Lie group G∗ is commutative and coincides with g∗ endowed with
the canonical Lie-Berezin Poisson structure.

So, G∗ is a direct analog of g∗ and can be considered as a quasi-classical approx-
imation to the quantum version of g∗.

One can define the infinitesimal action of G on G∗, i.e. Lie algebra homomor-
phism g → Vect(G∗). Consider a simply connected Lie group A corresponding to
a. It contains G and G∗ as subgroups, and the image of the product map

G×G∗ → A, (g, g∗) 7→ gg∗

contains a neighborhood of G ∪G∗ ⊂ A. It follows that for a given g∗ ∈ G∗ there
exists a neighborhood V of e in G such that for g ∈ V the product gg∗ can be
rewritten as

gg∗ = x∗(g, g∗) · y(g, g∗), x∗ ∈ G∗, y ∈ G.(5.4.6)

The correspondence g → (g∗ → x∗(g, g∗)) defines a local action of G on G∗. Usu-
ally this action is not global, but the corresponding infinitesimal action is well-
defined.

Example 1. We shall describe all possible Lie-Poisson structures on the groups
SU(2) and SL(2, R).

Let g be a simple real Lie algebra of dimension 3; i.e. g is either su(2) or sl(2, R).
In both cases the cohomology group H1(g,∧2g) is trivial and the cocycle ψ from
Proposition 5 is a coboundary: ψ(X) = ad X (P ∧Q).

We shall use the following property of our Lie algebra g: the map ∧2g → g :
X ∧ Y 7→ [X, Y ] is an isomorphism of g-modules. Hence, the Lie algebra structure
on a is defined by the element R = [P, Q], and direct computations show it has
the form

[X∗, Y ∗] = ([R, [X, Y ]])∗, [X, Y ∗] = [X, Y ]∗ + [[X, R], Y ].(5.4.7)

(Here X, Y ∈ g, and we use the notation X∗ := 〈X, ·〉 ∈ g∗.)
One can check that the resulting Manin triple (a, g, g∗) depends only on the

projective type of R ∈ g (supposed to be non-zero) which is unique in case g = su(2)
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and can be elliptic, hyperbolic or parabolic in case g = sl(2, R). Note also that R
can be reconstructed from (a, g, g∗) as a basic vector in the 1-dimensional space
[g∗, g∗]⊥ ⊂ g.

It is remarkable that the Lie algebra g∗ is always isomorphic to a subalgebra
of aff(2, R) generated by translations and dilations. One can see it from explicit
realizations of the corresponding Manin triples given below. Here x, y, z and a, b, c
are dual coordinates in g and g∗.

Case 1. Put a = sl(2, C) endowed by the bilinear form 〈X, Y 〉 = =tr(XY ), while

the subalgebras g, g∗ and the element R look like
(

ix y + iz
−y + iz −ix

)
, x, y, z ∈ R;(

a/2 0
b− ic −a/2

)
, a, b, c ∈ R; R =

(
i 0
0 −i

)
.

In this case we have a global unique decomposition A = G · G∗ which defines a
global action of G on G∗.

Case 2ell. Here a, g∗ and R are the same as in case 1, while g ≈ su(1, 1) consists
of matrices (

iz x+ iy
x− iy −iz

)
, x, y, z ∈ R.

Case 2hyp. Put a = sl(2, R)⊕ sl(2, R) with the bilinear form

〈(X1, Y1), (X2, Y2)〉a = tr(X1X2)− tr(Y1Y2);

g is sl(2, R) diagonally embedded in a; it consists of elements((
x y + z

y − z −x
)
⊕

(
x y + z

y − z −x
))

, x, y, z ∈ R;

g∗ and R are defined by((
a/4 (b− c)/2
0 −a/4

)
⊕

( −a/4 0
(b+ c)/2 a/4

))
, x, y, z ∈ R; R =

(
1 0
0 −1

)
.

Case 2par. Put a = sl(2, R) n sl(2, R) (semidirect product of sl(2, R) with an
abelian ideal isomorphic to sl(2, R) as an sl(2, R)-module) with the bilinear form

〈(X1 n Y1), (X2 n Y2)〉a = tr(X1Y2) + tr(Y1X2);

g, g∗ and R look like

X n 0, X ∈ sl(2, R); [R,X ] nX, X ∈ sl(2, R); R =
(

0 1
0 0

)
.

The product G ·G∗ in cases 2ell and 2hyp covers only a part of A, and the action
of G on G∗ is not globally defined.

The relation between G-orbits in G∗ and unirreps of the corresponding quantum
group Gq is very intriguing and has only started to be studied.

5.5. Groups related to von Neumann factors of type II. The beauty and
richness of applications of symmetries related to root systems urged mathematicians
to look for the infinite dimensional analog of these phenomena. The very successful
attempt was made by V. Kac and R. Moody. They discovered a new class of infinite
dimensional Lie algebras related to affine root systems. Later Kac and Peterson
developed the corresponding group theory. All this is clearly exposed in [Ka].

But one has a feeling that a continuous analog of this theory should exist. To
construct this analog it is natural to use the standard von Neumann factor of
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type II1 as a continuous analog of a matrix algebra. Very interesting problems
arise in connection with the right continuous analogs of such notions as triangular
subalgebra, Iwasava decomposition, flag manifold etc. . . .

6. Explanation of why the orbit method works

Some people consider the orbit method as a miracle which cannot be explained
by natural arguments. Nevertheless, there exist two independent “explanations” of
this phenomenon. We discuss below these arguments.

6.1. Mathematical argument. The idea behind this argument goes back to the
simple but important observation that for any matrix Lie group G the curved group
manifold G ⊂Matn(R) becomes just a linear subspace after the logarithm map

G 3 g 7→ log g :=
∑
k≥1

(−1)k−1(g − 1)k

k
.(6.1.1)

This map, unlike its inverse, the exponential map, is well defined only in some
neighborhood of the unit element. But for the moment we leave aside this relatively
small inconvenience. The more important fact is that the group law is not linearized
by the logarithm map. It is given by the famous Campbell-Hausdorff formula33

log(exp(X) · exp(Y )) = X + Y +
1
2
[X,Y ] +

1
12

([X, [X,Y ]] + [Y, [Y,X ]]) + · · · .
(6.1.2)

Of course, it could not be otherwise, bearing in mind that the group law is non-
commutative. But already Dedekind pointed out the remedy. He observed that
for non-commutative groups elements g1g2 and g2g1 can be different but always
belong to the same conjugacy class. So, on the level of conjugacy classes, the group
law becomes commutative again. This fact is crucial in the representation theory of
finite groups and also is a foundation of the Cartan – Gelfand – Godement – Harish-
Chandra theory of spherical functions. A new aspect of this phenomenon was
observed rather recently in [WD]. It turned out that the logarithm map intertwines
two kinds of convolution operations: the group convolution of class functions on
G and the Lie algebra convolution of AdG-invariant functions on g. In fact, the
precise formulations are given in [WD] only for compact and nilpotent Lie groups
(the latter can apparently be extended to the case of exponential Lie groups). In
both cases the statements are essentially equivalent to the integral formula for
characters (see rule 6 of the User’s Guide in section 2 and subsection 3.2), though
quite another technique is used for the proof in the nilpotent case.

The appearance of coadjoint orbits is now very natural: AdG-invariant functions
on g and K(G)-invariant functions on g∗ form the so-called dual hypergroups.

I mention also the other, infinitesimal way to express the same result. The
generalized Fourier transform (2.3.4′) also simplifies the infinitesimal characters,
i.e. the action of Laplace-Casimir operators. The result can be roughly formulated
as follows:

33In fact, only the existence of such a formula was proven by E. Campbell and F. Hausdorff,
and the beautiful (but not very practical) explicit expression for the coefficients was found later
by E. B. Dynkin.
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Proposition 1. After restriction to class functions and after conjugation by the
operator of multiplication by j(X), all Laplace-Casimir operators become differential
operators with constant coefficients (in the canonical coordinates).

For semisimple Lie groups a theorem of this sort was first obtained in the thesis
of F. A. Berezin in the 60’s, and for the general case it was suggested in my course
at IHP in 1968 and proved by M. Duflo [Du2] and V.A. Ginzburg [G].

6.2. Physical argument. This argument is now widely known under the rather
lucky name of geometric quantization. The idea is to use a correspondence
between classical and quantum physical systems. As we understand now, there is
no canonical and universal correspondence: the quantum world is different from the
classical one. Nonetheless, for many particular systems quantization rules which
allow one to construct a quantum system from the classical one were formulated.
Moreover, the symmetry possessed by a classical system is usually inherited by the
quantum counterpart.

Let’s now consider the elementary systems with a given symmetry group G
(that is, a system which cannot be decomposed into smaller parts without breaking
the symmetry).

On the classical level the phase space of such a system should be a homogeneous
symplectic G-manifold M . On the quantum level this is an irreducible unitary rep-
resentation of G in some Hilbert space H. It seems that the quantization principle
suggests a correspondence between homogeneous symplectic G-manifolds on the
one side and unirreps of G on the other.

Actually, the situation is slightly more delicate. It is known that the energy
function for classical systems is defined up to an additive constant, while for a
quantum system the energy is uniquely defined and is usually non-negative. This
shows that the right classical counterpart to quantum systems with the symmetry
group G are Poisson G-manifolds rather than symplectic ones. But we have seen
in 1.5 that homogeneous Poisson G-manifolds are essentially coadjoint orbits. So
we come to the desired correspondence between unirreps and coadjoint orbits.

In conclusion I would like to quote a sentence from the recent preprint “Defor-
mation quantization” by Kontsevich (cf. [Kon]):

Now we can say finally that the orbit method has solid background.

7. Byproducts, side effects and related topics

The orbit method stimulated the study of coadjoint orbits and turned out to be
related to several other domains which were rapidly developing in recent decades.
We briefly discuss here the three most important directions.

7.1. The moment map. The first general definition of the moment map was
given by J.-M. Souriau [S], although its particular cases (e.g. related to the Galilei
and Poincaré groups) were known to physicists long ago. In particular, the famous
E. Noether theorem describing the connection between symmetries and invariants
is simply the moment map for a one-dimensional Lie group of symmetries.

Most of the new applications of the moment map are related to the notion of
symplectic reduction. This procedure, which also goes back to classical Hamil-
tonian mechanics, is naturally formulated in terms of the moment map. Let G be
a connected Lie group, (M, σ) a symplectic G-Poisson manifold and µ : M → g∗

the associated moment map. For any coadjoint orbit Ω ⊂ g∗ the set MΩ = µ−1(Ω)



MERITS AND DEMERITS OF THE ORBIT METHOD 481

is G-invariant. Suppose that this set is a smooth manifold and that G acts on it so
that all orbits have the same dimension.34 Then the set MΩ/G of G-orbits in MΩ

is also a smooth manifold and possesses a canonical symplectic structure. (One can
easily check that the restriction of σ to MΩ is degenerate and ker σ|MΩ at the point
m coincides with the tangent space to the G-orbit of m.) This procedure allows
us to reduce the study of a mechanical system with the symmetry group G to the
study of another system with less degrees of freedom. Sometimes, it is worthwhile
to reverse this procedure and consider a complicated low-dimensional system as a
result of the reduction of a simple higher-dimensional system.

We refer to [AG] for a survey of the symplectic geometry and its applications.

7.2. Geometric quantization. This is one possible way to translate into math-
ematical language the physical term “quantization” (some others are algebraic,
asymptotic, deformational, path-integral quantization, etc.). All these theories are
based on the premise that classical and quantum mechanics are just different real-
izations of the same abstract scheme.

The goal of geometric quantization is to construct quantum objects from the
geometry of classical ones. Historically, there were two sources of this approach:

1) the “quantization rules” of old quantum mechanics which become more and
more elaborate (but still remain adjusted to rather special Hamiltonians defined on
special phase spaces),

2) the functor of unitary induction and its generalizations in the representation
theory which allowed one to construct explicitly the unitary duals (or at least a
large part of it) for many Lie groups.

It was B. Kostant who observed in [Ko1] that one can merge these theories into a
new one. Since then geometric quantization became very popular, especially among
physicists. We have, however, to remark that practically no general results in the
non-homogeneous situation were obtained. The quantization rules mentioned above
are usually not well defined and sometimes even contradictory. In the homogeneous
situation they are practically equivalent to one or another variant of the inducing
procedure (see section 2 and below). We refer to [K5], [Ko1], [So] for the definition
and basic properties of geometric quantization.

The most interesting applications of geometric quantization are related to infinite
dimensional systems (see e.g. [W2]). Many of them are only proved “on the physical
level”. See [DKN], [AS], [GS], [V] for further details.

7.3. Integrable systems. This huge domain was intensively developed during
the last 30 years. Before that isolated examples were known, and no general theory
existed. The new era began with the seminal discovery that the so-called Korteweg–
de Vries (KdV for short) equation

pt = ppx + pxxx

is a completely integrable system which possesses an infinite series of conservation
laws. Since then a lot of important examples of classical and quantum integrable
systems have been found and several schemes were proposed to explain their ap-
pearance (see e.g. [DKN]).

34In practical situations these conditions are often violated on a submanifold of lower dimen-
sion. Then one has to delete this submanifold or consider manifolds with singularities.
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The orbit method is a natural source of homogeneous symplectic manifolds (coad-
joint orbits) which can be considered as phase spaces of classical mechanical sys-
tems. Note that most of them are not isomorphic to cotangent bundles and therefore
do not correspond to a traditional mechanical system. On the other hand, this new
kind of phase space includes the following remarkable

Example 1. Consider a 2-dimensional sphere S2 with a symplectic form such that
the total volume is an integer n ≥ 1. As a coadjoint orbit for su(2) it admits a
quantization via the corresponding unirrep of dimension n. The physical interpre-
tation of this quantum system is a particle of spin s = n−1

2 which has no other
degree of freedom. So we get a classical counterpart of the notion of spin which for
a long time was not believed to exist.

To construct an integrable system, we need a big family of Poisson commuting
functions in the classical picture or a big family of commuting operators in the quan-
tum picture. The so-called Adler-Kostant scheme (see [Ko3] and [RS]) provides
such a family. The simplest version of this scheme is based on the decomposition
of a Lie algebra g into a direct sum of subspaces g± which are in fact subalgebras
in g. In this case we can define on g the new commutator

[X,Y ]˜:= [X+, Y+]− [X−, Y−](7.2.1)

where X± denotes the projection of X ∈ g to g±. The commutator (7.2.1) defines
a new Lie algebra structure on g and a new Poisson structure on g∗.

The remarkable fact is that all functions from P (g∗)G form a Poisson commut-
ing family with respect to this new structure. Moreover, the Hamiltonian systems
corresponding to H ∈ P (g∗)G admit the explicit description in terms of the fac-
torization problem:

G 3 g = g+ · g−, g± ∈ G±(7.2.2)

whereG± is the Lie subgroup in G corresponding to the Lie subalgebra g±. Namely,
the trajectory of a point F ∈ g∗ under the Hamiltonian flow defined by H ∈ P (g∗)G

is given by

F (t) = K(g±(t))F, where g±(t) are defined by exp(tdH(F )) = g+(t)−1g−(t).
(7.2.3)

Application of this scheme to different Lie algebras g and different points F ∈ g∗

gives a uniform construction for most known integrable systems.
The only deficiency of this approach is that it appeared post factum, when almost

all interesting examples were discovered by other methods.

8. Some open problems and subjects for meditation

8.1. Functional dimension. It is well known that:
1) All (separable, infinite dimensional) Hilbert spaces are isomorphic.
2) The spaces C∞(M) are isomorphic Frechet spaces for all smooth manifolds

M (of positive dimension).
3) All infinite countable sets are equivalent.

But there is no natural isomorphism between
1) L2(R, dx) and L2(R2, dxdy).
2) C∞(R) and C∞(R2).
3) Z and Z2.
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The non-formal problem is to define the functional dimension f–dim of an
infinite-dimensional space so that, for example, we have

f– dimL2(Rn, dnx) = f– dimC∞(Rn) = n.(8.1.1)

In order to do it we have to restrict the set of morphisms between our spaces and
allow only natural morphisms. There are several possible ways to impose such a
restriction. One way is to define some “basic” morphisms and consider as natural
only those morphisms which are compositions of basic ones. For the spaces of
smooth functions on manifolds the set of basic morphisms should include:

a) multiplication by non-vanishing functions,
b) diffeomorphisms of the underlying manifolds,
c) some integral transformations such as Fourier or Radon transforms.
Another way is to introduce an additional structure in our linear spaces and

consider only morphisms that preserve this structure. For example, it is not diffi-
cult to show that a compact smooth manifold M is completely determined by the
associative algebra A = C∞(M) or by the Lie algebra L = Vect(M) of smooth
vector fields on M . Indeed, the points of M correspond to maximal ideals in A or
to Lie subalgebras of minimal codimension in L.

Here we discuss the related non-formal problem:
Show that if dimM1 > dimM2, then the Lie algebra Vect(M1) is, firstly, “bigger”

and, secondly,“more non-commutative” than Vect(M2).
The answer to the simplest version of the first question was obtained in [KK]

and [KKM]. Let ξ, η be a pair of vector fields on M . Consider the Lie subalgebra
L(ξ, η) ⊂ Vect(M) generated by these fields. It is a bigraded Lie algebra of the
form

L(ξ, η) = FL(x, y)/I(ξ, η)(8.1.2)

where FL(x, y) is a naturally bigraded free Lie algebra with two generators x, y
and I(ξ, η) ⊂ FL(x, y) is the kernel of the map φ : FL(x, y) → L(ξ, η) defined by
φ(ξ) = x, φ(η) = y. It turns out that for generic ξ, η the ideal I(ξ, η) depends only
on dimM . So, for each n ∈ N we get a distinguished bigraded ideal In ⊂ FL(x, y),
and we define the bigraded Lie algebra L(n) := FL(x, y)/In.

The growth of the numbers ak.l(n) := dimLk,l(n) can be considered as charac-
teristic of the size of Vect(M) for n-dimensional M .

Theorem. (Conjectured in [KK], proved later by A.I. Molev)

ak,l(1) = pk(k + l − 1) + pl(k + l − 1)− p(k + l − 1)(8.1.3)

where p(n) is the standard partition function and pk(n) is the number of partitions
of n into ≤ k parts (or in parts of size ≤ k).

The interesting corollary is that the sequence am(n) =
∑
k+l=m ak.l(n) for n = 1

has intermediate, or subexponential growth. Namely,

am(1) ≈ 1
4
√

3
eπ
√

2
3m which implies log log am(1) ≈ 1

2
logm.(8.1.4)

A more general result has been obtained by A.I. Molev:

log log am(n) ≈ n

n+ 1
logm.(8.1.5)

Hence, all Lie algebras of vector fields on smooth manifolds have intermediate
growth. In particular, they never contain a free Lie subalgebra which has exponential
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growth: ∑
k+l=m

dimFLk,l(x, y) =
1
m

∑
d|m

µ(d)2m/d ≈ 2m

m
.

Many interesting questions arise in connection with the second question, i.e.
with the structure of algebras L(n) and ideals I(n). We mention only the

Conjecture. The ideal I(1) is spanned by expressions∑
s∈S4

sgn s · ad(xs(1))ad(xs(2))ad(xs(3))ad(xs(4))y, xi, y ∈ L(1).(8.1.6)

In conclusion we repeat the main problem:
Give a definition of the functional dimension of a representation so that rule 9

is valid.

8.2. Infinitesimal characters. The general proof of the modified rule 7 was
obtained independently in [Du2] and [Gi]. The proof is rather involved and analytic
in nature. But the statement itself is purely algebraic and certainly can be proved
algebraically. My own attempt to do it was broken by the discovery that the
manifold An of the structure constants of n-dimensional Lie groups turned out to
be highly reducible (the number of irreducible components grows at least as p(n)).
Another approach was suggested in [KV], but the problem is still open.

Quite recently I learned that M. Kontsevich has found a new proof suggested by
the string theory and based on the computation of a functional integral (see [Kon]).
Probably this is the right solution to the problem (cf. the quotation in the end of
section 6).

8.3. Multiplicities and geometry. Let G be a compact simply connected Lie
group and T its maximal connected abelian subgroup, g ⊃ t the corresponding Lie
algebras which are identified with their duals via anAd(G)-invariant scalar product.
Let P ⊂ it∗ be the weight lattice, ρ ∈ P the sum of the fundamental weights and
Ωλ ⊂ g∗ the coadjoint orbit of the point iλ ∈ t∗ ⊂ g∗. We denote by p the natural
projection of g∗ on t∗.

It is known that for any λ ∈ P+ the set Cλ = p(Ωλ+ρ) is the convex hull of |W |
different points {iw(λ + ρ), w ∈ W}. Let us call elementary cell in t∗ the set
C0 = p(Ωρ) as well as all its translations by elements of P . One can check that Cλ
is the union of elementary cells centered at the points of P ∩ p(Ωλ).

Let φλ be the density of the measure on t∗ which arises by pushing forward the
canonical measure on Ωλ. The following exercise should be easy for those who know
rule 6 for compact groups:

Show that

φλ+ρ(x) =
∑

P∩p(Ωλ)

mλ(µ)φρ(µ+ x).

A more difficult and less formal question is:
How is the multiplicity mλ(µ) of a weight µ in the unirrep πλ related to the

geometry of the set p−1(C0 + µ)?
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8.4. Complementary series. The orbit method apparently leaves no place for
the complementary series of representations of semisimple groups. Indeed, accord-
ing to the ideology of the orbit method, the partition of g∗ into coadjoint orbits
corresponds to the decomposition of the regular representation into irreducible com-
ponents. But unirreps of the complementary series by definition do not contribute
to this decomposition.

The possible solution to this paradox is based on a remark made in one of the
early papers by Gelfand-Naimark. They observed that for non-compact semisim-
ple groups there is a big difference between L1(G, dg) and L2(G, dg) due to the
exponential growth of the density of the Haar measure. One of the ingredients of
the orbit method is the generalized Fourier transform (2.3.4′) from the space of
functions on G to the space of functions on g∗, which is the composition of two
maps:

1. The map from functions on G to functions on g : f 7→ φ : φ(X) =

j(X)f(expX), where j(X) =
√

d(expX)
dX ;

2. The usual Fourier transform which sends functions on g to functions on g∗.
The image of L2(G, dg) under the generalized Fourier transform consists of square

integrable functions (at least if we consider functions with support in the domain
E where the exponential map is one-to-one). But the image of L1(G, dg) consists
of much nicer functions which admit an analytic continuation from g∗ to some
strip in g∗C. So, one can try to associate complementary series of unirreps with G-
orbits which lie inside this strip and are invariant under the complex conjugation.
One can check that in the simplest case G = SL(2,R) this approach leads to the
correct integral formula for the (distributional) character of a representation of the
complementary series.

I believe that the problem deserves further investigation.

8.5. Finite groups. Let Gn(K) be the group of all upper triangular matrices
with elements from some field K and with units on the main diagonal. The case
K = R was one of the main examples illustrating the orbit method in [K1]. It turns
out that the case of a finite field Fq (when Gn(Fq) is a finite nilpotent group of
order q

n(n−1)
2 ) is also very interesting (see [K6], [KM]).

We are interested in the asymptotic properties of harmonic analysis on Gn(Fq)
when q is fixed and n goes to infinity. In particular I want to advertise here once
again some principal questions:

1. What are the asymptotics of the number of coadjoint orbits for Gn?
2. Can one describe the “generic” or “typical” coadjoint orbit?
3. More generally, which characteristics of orbits and representations can one

deal with for the groups of “very large matrices”, say, of order 1010 (or even 20)
over a finite field? (Note that the simplest numerical questions about these groups
are outside the capability of modern computers.)

Of course, these questions make sense not only for triangular groups and their
analogs (unipotent radicals of classical groups). For instance, one can try to find
the answer for GL(n, Fq), using the results from [Z].

8.6. Infinite dimensional groups. The most intriguing and important question
is related to the Virasoro-Bott group. It can be formulated as follows:

How can one explain the (rather complicated) structure of discrete series of unir-
reps of Vir in terms of coadjoint orbits?
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Note that the very interesting paper [AS] gives an answer to this question, though
it is written on the physical level of accuracy and needs a translation into mathe-
matical language.

I leave it to the reader to formulate (and solve) other questions concerning the
application of the orbit method to infinite dimensional groups.
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