Eigenvalues, invariant factors, highest weights, and Schubert calculus
Author:
William Fulton
Journal:
Bull. Amer. Math. Soc. 37 (2000), 209-249
MSC (2000):
Primary 15A42, 22E46, 14M15; Secondary 05E15, 13F10, 14C17, 15A18, 47B07
DOI:
https://doi.org/10.1090/S0273-0979-00-00865-X
Published electronically:
April 5, 2000
MathSciNet review:
1754641
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We describe recent work of Klyachko, Totaro, Knutson, and Tao that characterizes eigenvalues of sums of Hermitian matrices and decomposition of tensor products of representations of . We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.
- [AW] S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett. 5 (1998), no. 6, 817–836. MR 1671192, https://doi.org/10.4310/MRL.1998.v5.n6.a10
- [AM] A. R. Amir-Moéz, Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations, Duke Math. J. 23 (1956), 463-476. MR 18:105j
- [BDJ] J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, math.CO/9901118, J. Amer. Math. Soc. 12 (1999), 1119-1178. CMP 99:15
- [Be]
P. Belkale, Local systems on
for
a finite set, Ph.D. thesis, University of Chicago, 1999.
- [BS] A. Berenstein and R. Sjamaar, Projections of coadjoint orbits and the Hilbert-Mumford criterion, to appear in J. Amer. Math. Soc., math.SG/9810125.
- [BG] F. A. Berezin and I. M. Gel′fand, Some remarks on the theory of spherical functions on symmetric Riemannian manifolds, Amer. Math. Soc. Transl. (2) 21 (1962), 193–238. MR 0151929
- [Bi] P. Biane, Free probability for probabilists, MSRI preprint 1998-040.
- [Bu] A. Buch, The saturation conjecture (after A. Knutson and T. Tao), to appear in l'Enseignement Math., math.C0/9810180.
- [C] David Carlson, Inequalities relating the degrees of elementary divors within a matrix, Simon Stevin 44 (1970/71), 3–10. MR 274469
- [DST] Jane Day, Wasin So, and Robert C. Thompson, The spectrum of a Hermitian matrix sum, Linear Algebra Appl. 280 (1998), no. 2-3, 289–332. MR 1644987, https://doi.org/10.1016/S0024-3795(98)10019-8
- [DW] H. Derksen and J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, to appear in J. Amer. Math. Soc.
- [D] J. Deruyts, Essai d'une théorie générale des formes algébriques, Mém. Soc. Roy. Sci. Liège 17 (1892), 1-156.
- [DO] Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155
- [DRW] A. H. Dooley, J. Repka, and N. J. Wildberger, Sums of adjoint orbits, Linear and Multilinear Algebra 36 (1993), no. 2, 79–101. MR 1308911, https://doi.org/10.1080/03081089308818278
- [F] Ky Fan, On a theorem of Weyl concerning eigenvalues of linear transformations, Proc. Nat. Acad. Sci. USA 35 (1949), 652-655. MR 11:600e
- [Fi] Miroslav Fiedler, Bounds for the determinant of the sum of hermitian matrices, Proc. Amer. Math. Soc. 30 (1971), 27–31. MR 286814, https://doi.org/10.1090/S0002-9939-1971-0286814-1
- [Fr] Shmuel Friedland, Extremal eigenvalue problems for convex sets of symmetric matrices and operators, Israel J. Math. 15 (1973), 311–331. MR 338029, https://doi.org/10.1007/BF02787574
- [Fu1] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
- [Fu2] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- [Fu3] -, Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Séminaire Bourbaki 845, June, 1998, Astérisque 252 (1998), 255-269. CMP 99:13
- [FH] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249
- [GN] I. M. Gel'fand and M. A. Naimark, The relation between the unitary representations of the complex unimodular group and its unitary subgroup, Izvestiya. Akad. Nauk SSSR. Ser. Mat 14 (1950), 239-260 (Russian). MR 12:9i
- [Gr] Daniel R. Grayson, Reduction theory using semistability, Comment. Math. Helv. 59 (1984), no. 4, 600–634. MR 780079, https://doi.org/10.1007/BF02566369
- [He] G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333–356. MR 665160, https://doi.org/10.1007/BF01393821
- [HR] Uwe Helmke and Joachim Rosenthal, Eigenvalue inequalities and Schubert calculus, Math. Nachr. 171 (1995), 207–225. MR 1316359, https://doi.org/10.1002/mana.19951710113
- [HZ] Joseph Hersch and Bruno Zwahlen, Évaluations par défaut pour une somme quelconque de valeurs propres 𝛾_{𝑘} d’un opérateur 𝐶=𝐴+𝐵 à l’aide de valeurs propres 𝛼₁ de 𝐴 et 𝛽ⱼ de 𝐵, C. R. Acad. Sci. Paris 254 (1962), 1559–1561 (French). MR 132746
- [H1] A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620-630. MR 16:105c
- [H2] Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225–241. MR 140521
- [Joh] C. R. Johnson, Precise intervals for specific eigenvalues of a product of a positive definite and a Hermitian matrix, Linear Algebra Appl. 117 (1989), 159-164.
- [JS] Charles R. Johnson and Erik A. Schreiner, The relationship between 𝐴𝐵 and 𝐵𝐴, Amer. Math. Monthly 103 (1996), no. 7, 578–582. MR 1404081, https://doi.org/10.2307/2974670
- [J] S. Johnson, The Schubert calculus and eigenvalue inequalities for sums of Hermitian matrices, Ph.D. thesis, University of California. Santa Barbara, 1979.
- [K] T. Klein, The multiplication of Schur-functions and extensions of 𝑝-modules, J. London Math. Soc. 43 (1968), 280–284. MR 228481, https://doi.org/10.1112/jlms/s1-43.1.280
- [Kle] Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- [Kl1] Alexander A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419–445. MR 1654578, https://doi.org/10.1007/s000290050037
- [Kl2] -, Random walks on symmetric spaces and inequalities for matrix spectra, preprint, 1999.
- [Kn] A. Knutson, The symplectic and algebraic geometry of Horn's problem, math.LA/9911088.
- [KT] Allen Knutson and Terence Tao, The honeycomb model of 𝐺𝐿_{𝑛}(𝐶) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055–1090. MR 1671451, https://doi.org/10.1090/S0894-0347-99-00299-4
- [KTW] A. Knutson, T. Tao and C. Woodward, Honeycombs II: facets of the Littlewood-Richardson cone, to appear.
- [Ko] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, https://doi.org/10.2307/1970237
- [La] Serge Lang, Algebra, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. MR 783636
- [Le] L. Lesieur, Les problèmes d'intersection sur une variété de Grassmann, C. R. Acad. Sci. 225 (1947), 916-917. MR 9:304c
- [L1] B. V. Lidskii, The proper values of the sum and product of symmetric matrices, Dokl. Akad. Nauk SSSR 74 (1950), 769-772 (Russian).
- [L2] B. V. Lidskiĭ, A polyhedron of the spectrum of the sum of two Hermitian matrices, Funktsional. Anal. i Prilozhen. 16 (1982), no. 2, 76–77 (Russian). MR 659172
- [LR] D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London A 233 (1934), 99-141.
- [Mac] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- [MFK] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- [O] A. Okounkov, Random matrices and random permutations, math.CO/9903176.
- [OS] L. O'Shea and R. Sjamaar, Moment maps and Riemannian symmetric pairs, to appear in Math. Ann., math.SG/9902059.
- [PR] P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; 𝑄-polynomial approach, Compositio Math. 107 (1997), no. 1, 11–87. MR 1457343, https://doi.org/10.1023/A:1000182205320
- [QS] João F. Queiró and Eduardo M. Sá, Singular values and invariant factors of matrix sums and products, Linear Algebra Appl. 225 (1995), 43–56. MR 1341069, https://doi.org/10.1016/0024-3795(93)00317-S
- [R] R. C. Riddell, Minimax problems on Grassmann manifolds. Sums of eigenvalues, Adv. in Math. 54 (1984), no. 2, 107–199. MR 762511, https://doi.org/10.1016/0001-8708(84)90039-2
- [SQS] A. P. Santana, J. F. Queiró and E. Marques de Sá, Group representations and matrix spectral problems, Linear and Multilinear Algebra 46 (1999), 1-23. CMP 2000:02
- [So] Frank Sottile, The special Schubert calculus is real, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 35–39. MR 1679451, https://doi.org/10.1090/S1079-6762-99-00058-X
- [Ta] Tin-Yau Tam, A unified extension of two results of Ky Fan on the sum of matrices, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2607–2614. MR 1487343, https://doi.org/10.1090/S0002-9939-98-04770-4
- [Thi] G. Philip A. Thijsse, The local invariant factors of a product of holomorphic matrix functions: the order 4 case, Integral Equations Operator Theory 16 (1993), no. 2, 277–304. MR 1205003, https://doi.org/10.1007/BF01358957
- [Th1] Robert C. Thompson, An inequality for invariant factors, Proc. Amer. Math. Soc. 86 (1982), no. 1, 9–11. MR 663854, https://doi.org/10.1090/S0002-9939-1982-0663854-9
- [Th2] Robert C. Thompson, Smith invariants of a product of integral matrices, Linear algebra and its role in systems theory (Brunswick, Maine, 1984) Contemp. Math., vol. 47, Amer. Math. Soc., Providence, RI, 1985, pp. 401–435. MR 828316, https://doi.org/10.1090/conm/047/828316
- [Th3] Robert C. Thompson, Invariant factors of algebraic combinations of matrices, Frequency domain and state space methods for linear systems (Stockholm, 1985) North-Holland, Amsterdam, 1986, pp. 73–87. MR 924201
- [TF] Robert C. Thompson and Linda J. Freede, On the eigenvalues of sums of Hermitian matrices, Linear Algebra Appl. 4 (1971), 369–376. MR 288132, https://doi.org/10.1007/bf01817787
- [TT1] R. C. Thompson and S. Therianos, The eigenvalues and singular values of matrix sums and products. VII, Canad. Math. Bull. 16 (1973), 561–569. MR 352142, https://doi.org/10.4153/CMB-1973-092-x
- [TT2] R. C. Thompson and S. Therianos, On a construction of B. P. Zwahlen, Linear and Multilinear Algebra 1 (1973/74), 309–325. MR 340289, https://doi.org/10.1080/03081087408817031
- [T] Burt Totaro, Tensor products of semistables are semistable, Geometry and analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 242–250. MR 1463972
- [W] H. Weyl, Das asymtotische Verteilungsgesetz der Eigenwerte lineare partieller Differentialgleichungen, Math. Ann. 71 (1912), 441-479.
- [Wi] H. Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106-110. MR 16:785a
- [X] Bo Yan Xi, A general form of the minimum-maximum theorem for eigenvalues of self-conjugate quaternion matrices, Nei Monggol Daxue Xuebao Ziran Kexue 22 (1991), no. 4, 455–458 (Chinese, with English summary). MR 1132152
- [Z] A. Zelevinsky, Littlewood-Richardson semigroups, math.CO/9704228, New Perspectives in Algebraic Combinatorics (L. J. Billera, A. Björner, C. Greene, R. E. Simion, R. P. Stanley, eds.), Cambridge University Press (MSRI Publication), 1999, pp. 337-345.
- [Zw] Bruno Peter Zwahlen, Über die Eigenwerte der Summe zweier selbstadjungierter Operatoren, Comment. Math. Helv. 40 (1966), 81–116 (German). MR 190152, https://doi.org/10.1007/BF02564365
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 15A42, 22E46, 14M15, 05E15, 13F10, 14C17, 15A18, 47B07
Retrieve articles in all journals with MSC (2000): 15A42, 22E46, 14M15, 05E15, 13F10, 14C17, 15A18, 47B07
Additional Information
William Fulton
Affiliation:
University of Michigan, Ann Arbor, MI 48109-1109
Email:
wfulton@math.lsa.umich.edu
DOI:
https://doi.org/10.1090/S0273-0979-00-00865-X
Received by editor(s):
July 19, 1999
Received by editor(s) in revised form:
January 3, 2000
Published electronically:
April 5, 2000
Additional Notes:
The author was partly supported by NSF Grant #DMS9970435.
Article copyright:
© Copyright 2000
American Mathematical Society