Eigenvalues, invariant factors, highest weights, and Schubert calculus
HTML articles powered by AMS MathViewer
- by William Fulton PDF
- Bull. Amer. Math. Soc. 37 (2000), 209-249 Request permission
Abstract:
We describe recent work of Klyachko, Totaro, Knutson, and Tao that characterizes eigenvalues of sums of Hermitian matrices and decomposition of tensor products of representations of $GL_{n}(\mathbb {C})$. We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.References
- S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett. 5 (1998), no. 6, 817–836. MR 1671192, DOI 10.4310/MRL.1998.v5.n6.a10
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1 [BDJ]BDJ J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, math.CO/9901118, J. Amer. Math. Soc. 12 (1999), 1119–1178. [Be]Be P. Belkale, Local systems on $\mathbb {P}^{1}\smallsetminus S$ for $S$ a finite set, Ph.D. thesis, University of Chicago, 1999. [BS]BS A. Berenstein and R. Sjamaar, Projections of coadjoint orbits and the Hilbert-Mumford criterion, to appear in J. Amer. Math. Soc., math.SG/9810125.
- F. A. Berezin and I. M. Gel′fand, Some remarks on the theory of spherical functions on symmetric Riemannian manifolds, Amer. Math. Soc. Transl. (2) 21 (1962), 193–238. MR 0151929, DOI 10.1090/trans2/021/07 [Bi]Bi P. Biane, Free probability for probabilists, MSRI preprint 1998-040. [Bu]Bu A. Buch, The saturation conjecture (after A. Knutson and T. Tao), to appear in l’Enseignement Math., math.C0/9810180.
- David Carlson, Inequalities relating the degrees of elementary divors within a matrix, Simon Stevin 44 (1970/71), 3–10. MR 274469
- Jane Day, Wasin So, and Robert C. Thompson, The spectrum of a Hermitian matrix sum, Linear Algebra Appl. 280 (1998), no. 2-3, 289–332. MR 1644987, DOI 10.1016/S0024-3795(98)10019-8 [DW]DW H. Derksen and J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, to appear in J. Amer. Math. Soc. [D]D J. Deruyts, Essai d’une théorie générale des formes algébriques, Mém. Soc. Roy. Sci. Liège 17 (1892), 1–156.
- Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155
- A. H. Dooley, J. Repka, and N. J. Wildberger, Sums of adjoint orbits, Linear and Multilinear Algebra 36 (1993), no. 2, 79–101. MR 1308911, DOI 10.1080/03081089308818278
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Miroslav Fiedler, Bounds for the determinant of the sum of hermitian matrices, Proc. Amer. Math. Soc. 30 (1971), 27–31. MR 286814, DOI 10.1090/S0002-9939-1971-0286814-1
- Shmuel Friedland, Extremal eigenvalue problems for convex sets of symmetric matrices and operators, Israel J. Math. 15 (1973), 311–331. MR 338029, DOI 10.1007/BF02787574
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693 [Fu3]Fu3 —, Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Séminaire Bourbaki 845, June, 1998, Astérisque 252 (1998), 255–269.
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Daniel R. Grayson, Reduction theory using semistability, Comment. Math. Helv. 59 (1984), no. 4, 600–634. MR 780079, DOI 10.1007/BF02566369
- G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333–356. MR 665160, DOI 10.1007/BF01393821
- Uwe Helmke and Joachim Rosenthal, Eigenvalue inequalities and Schubert calculus, Math. Nachr. 171 (1995), 207–225. MR 1316359, DOI 10.1002/mana.19951710113
- Joseph Hersch and Bruno Zwahlen, Évaluations par défaut pour une somme quelconque de valeurs propres $\gamma _{k}$ d’un opérateur $C=A+B$ à l’aide de valeurs propres $\alpha _{1}$ de $A$ et $\beta _{j}$ de $B$, C. R. Acad. Sci. Paris 254 (1962), 1559–1561 (French). MR 132746
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225–241. MR 140521, DOI 10.2140/pjm.1962.12.225 [Joh]Joh C. R. Johnson, Precise intervals for specific eigenvalues of a product of a positive definite and a Hermitian matrix, Linear Algebra Appl. 117 (1989), 159–164.
- Charles R. Johnson and Erik A. Schreiner, The relationship between $AB$ and $BA$, Amer. Math. Monthly 103 (1996), no. 7, 578–582. MR 1404081, DOI 10.2307/2974670 [J]J S. Johnson, The Schubert calculus and eigenvalue inequalities for sums of Hermitian matrices, Ph.D. thesis, University of California. Santa Barbara, 1979.
- T. Klein, The multiplication of Schur-functions and extensions of $p$-modules, J. London Math. Soc. 43 (1968), 280–284. MR 228481, DOI 10.1112/jlms/s1-43.1.280
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- Alexander A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419–445. MR 1654578, DOI 10.1007/s000290050037 [Kl2]Kl2 —, Random walks on symmetric spaces and inequalities for matrix spectra, preprint, 1999. [Kn]Kn A. Knutson, The symplectic and algebraic geometry of Horn’s problem, math.LA/9911088.
- Allen Knutson and Terence Tao, The honeycomb model of $\textrm {GL}_n(\textbf {C})$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055–1090. MR 1671451, DOI 10.1090/S0894-0347-99-00299-4 [KTW]KTW A. Knutson, T. Tao and C. Woodward, Honeycombs II: facets of the Littlewood-Richardson cone, to appear.
- Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, DOI 10.2307/1970237
- Serge Lang, Algebra, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. MR 783636
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945 [L1]L1 B. V. Lidskii, The proper values of the sum and product of symmetric matrices, Dokl. Akad. Nauk SSSR 74 (1950), 769–772 (Russian).
- B. V. Lidskiĭ, A polyhedron of the spectrum of the sum of two Hermitian matrices, Funktsional. Anal. i Prilozhen. 16 (1982), no. 2, 76–77 (Russian). MR 659172 [LR]LR D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London A 233 (1934), 99–141.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5 [O]O A. Okounkov, Random matrices and random permutations, math.CO/9903176. [OS]OS L. O’Shea and R. Sjamaar, Moment maps and Riemannian symmetric pairs, to appear in Math. Ann., math.SG/9902059.
- P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; $\~Q$-polynomial approach, Compositio Math. 107 (1997), no. 1, 11–87. MR 1457343, DOI 10.1023/A:1000182205320
- João F. Queiró and Eduardo M. Sá, Singular values and invariant factors of matrix sums and products, Linear Algebra Appl. 225 (1995), 43–56. MR 1341069, DOI 10.1016/0024-3795(93)00317-S
- R. C. Riddell, Minimax problems on Grassmann manifolds. Sums of eigenvalues, Adv. in Math. 54 (1984), no. 2, 107–199. MR 762511, DOI 10.1016/0001-8708(84)90039-2 [SQS]SQS A. P. Santana, J. F. Queiró and E. Marques de Sá, Group representations and matrix spectral problems, Linear and Multilinear Algebra 46 (1999), 1–23.
- Frank Sottile, The special Schubert calculus is real, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 35–39. MR 1679451, DOI 10.1090/S1079-6762-99-00058-X
- Tin-Yau Tam, A unified extension of two results of Ky Fan on the sum of matrices, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2607–2614. MR 1487343, DOI 10.1090/S0002-9939-98-04770-4
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- Robert C. Thompson, An inequality for invariant factors, Proc. Amer. Math. Soc. 86 (1982), no. 1, 9–11. MR 663854, DOI 10.1090/S0002-9939-1982-0663854-9
- Robert C. Thompson, Smith invariants of a product of integral matrices, Linear algebra and its role in systems theory (Brunswick, Maine, 1984) Contemp. Math., vol. 47, Amer. Math. Soc., Providence, RI, 1985, pp. 401–435. MR 828316, DOI 10.1090/conm/047/828316
- Robert C. Thompson, Invariant factors of algebraic combinations of matrices, Frequency domain and state space methods for linear systems (Stockholm, 1985) North-Holland, Amsterdam, 1986, pp. 73–87. MR 924201
- Robert C. Thompson and Linda J. Freede, On the eigenvalues of sums of Hermitian matrices, Linear Algebra Appl. 4 (1971), 369–376. MR 288132, DOI 10.1007/bf01817787
- R. C. Thompson and S. Therianos, The eigenvalues and singular values of matrix sums and products. VII, Canad. Math. Bull. 16 (1973), 561–569. MR 352142, DOI 10.4153/CMB-1973-092-x
- R. C. Thompson and S. Therianos, On a construction of B. P. Zwahlen, Linear and Multilinear Algebra 1 (1973/74), 309–325. MR 340289, DOI 10.1080/03081087408817031
- Burt Totaro, Tensor products of semistables are semistable, Geometry and analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 242–250. MR 1463972 [W]W H. Weyl, Das asymtotische Verteilungsgesetz der Eigenwerte lineare partieller Differentialgleichungen, Math. Ann. 71 (1912), 441–479.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Bo Yan Xi, A general form of the minimum-maximum theorem for eigenvalues of self-conjugate quaternion matrices, Nei Monggol Daxue Xuebao Ziran Kexue 22 (1991), no. 4, 455–458 (Chinese, with English summary). MR 1132152 [Z]Z A. Zelevinsky, Littlewood-Richardson semigroups, math.CO/9704228, New Perspectives in Algebraic Combinatorics (L. J. Billera, A. Björner, C. Greene, R. E. Simion, R. P. Stanley, eds.), Cambridge University Press (MSRI Publication), 1999, pp. 337–345.
- Bruno Peter Zwahlen, Über die Eigenwerte der Summe zweier selbstadjungierter Operatoren, Comment. Math. Helv. 40 (1966), 81–116 (German). MR 190152, DOI 10.1007/BF02564365
Additional Information
- William Fulton
- Affiliation: University of Michigan, Ann Arbor, MI 48109-1109
- Email: wfulton@math.lsa.umich.edu
- Received by editor(s): July 19, 1999
- Received by editor(s) in revised form: January 3, 2000
- Published electronically: April 5, 2000
- Additional Notes: The author was partly supported by NSF Grant #DMS9970435.
- © Copyright 2000 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 37 (2000), 209-249
- MSC (2000): Primary 15A42, 22E46, 14M15; Secondary 05E15, 13F10, 14C17, 15A18, 47B07
- DOI: https://doi.org/10.1090/S0273-0979-00-00865-X
- MathSciNet review: 1754641