Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Lou van den Dries
Title: Tame topology and o-minimal structures
Additional book information: Cambridge Univ. Press, New York, 1998, x + 180 pp., ISBN 0-521-59838-9, $39.95$

References [Enhancements On Off] (What's this?)

  • Riccardo Benedetti and Jean-Jacques Risler, Real algebraic and semi-algebraic sets, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990. MR 1070358
  • Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342
  • Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
  • Lou van den Dries, Remarks on Tarski’s problem concerning $(\textbf {R},\,+,\,\cdot ,\,\textrm {exp})$, Logic colloquium ’82 (Florence, 1982) Stud. Logic Found. Math., vol. 112, North-Holland, Amsterdam, 1984, pp. 97–121. MR 762106, DOI 10.1016/S0049-237X(08)71811-1
  • Lou van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Amer. Math. Soc. (N.S.) 15 (1986), no. 2, 189–193. MR 854552, DOI 10.1090/S0273-0979-1986-15468-6
  • Lou van den Dries, Angus Macintyre, and David Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140 (1994), no. 1, 183–205. MR 1289495, DOI 10.2307/2118545
  • Lou van den Dries and Chris Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), no. 2, 497–540. MR 1404337, DOI 10.1215/S0012-7094-96-08416-1
  • Lou van den Dries and Patrick Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350 (1998), no. 11, 4377–4421. MR 1458313, DOI 10.1090/S0002-9947-98-02105-9
  • [9]
    L. van den Dries and P. Speissegger, The field of reals with multisummable series and the exponential function, Proc. London Math. Soc., to appear.
  • Alexandre Grothendieck, Esquisse d’un programme, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 5–48 (French, with French summary). With an English translation on pp. 243–283. MR 1483107
  • A. G. Hovanskiĭ, A class of systems of transcendental equations, Dokl. Akad. Nauk SSSR 255 (1980), no. 4, 804–807 (Russian). MR 600749
  • Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
  • Ya’acov Peterzil and Sergei Starchenko, A trichotomy theorem for o-minimal structures, Proc. London Math. Soc. (3) 77 (1998), no. 3, 481–523. MR 1643405, DOI 10.1112/S0024611598000549
  • [14]
    Y. Peterzil, A. Pillay and S. Starchenko, Simple algebraic and semialgebraic groups over real closed fields, Trans. AMS, to appear.
  • Anand Pillay, On groups and fields definable in $o$-minimal structures, J. Pure Appl. Algebra 53 (1988), no. 3, 239–255. MR 961362, DOI 10.1016/0022-4049(88)90125-9
  • Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
  • Leila Schneps and Pierre Lochak (eds.), Geometric Galois actions. 1, London Mathematical Society Lecture Note Series, vol. 242, Cambridge University Press, Cambridge, 1997. Around Grothendieck’s “Esquisse d’un programme”. MR 1483106, DOI 10.1017/CBO9780511758874
  • [18]
    P. Speissegger, The Pfaffian closure of an o-minimal structure, J. Reine Angew. Math. 508 (1999), 198-211. CMP 99:09
    B. Tessier, Tame and stratified objects, in [17], 231-243.
  • A. J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), no. 4, 1051–1094. MR 1398816, DOI 10.1090/S0894-0347-96-00216-0
  • [21]
    A. Wilkie, A general theorem of the complement and some new o-minimal structures, preprint, 1996.

    Review Information:

    Reviewer: David Marker
    Affiliation: University of Illinois at Chicago
    Journal: Bull. Amer. Math. Soc. 37 (2000), 351-357
    Published electronically: March 2, 2000
    Review copyright: © Copyright 2000 American Mathematical Society