BULLETIN (New Series) OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 37, Number 3, Pages 251-307

S 0273-0979(00)00870-3

Article electronically published on April 10, 2000

FOLDING AND COLORING PROBLEMS
IN MATHEMATICS AND PHYSICS

P. DI FRANCESCO

ABSTRACT. We review various folding problems arising in the physics of mem-
branes and polymers. These are (1) the phantom folding of tethered mem-
branes, i.e. the two-dimensional lattice folding; (2) the phantom folding of
fluid membranes, i.e. the folding of tessellations of arbitrary genus; (3) the
self-avoiding folding of polymers, i.e. the meander problem. All three prob-
lems are found to be related to coloring problems and possess one kind of
underlying integrable structure, in different guises. Many mathematical re-
sults follow from taking advantage of this fact.
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1. INTRODUCTION

In this work, we will deal with mathematical models describing mainly the so-
called polymerized membranes and polymers. Examples of polymerized membranes
in nature are for instance the hulls of the corpuscles of blood; polymers may be
viewed among other things as the simplified physical counterparts of biological
proteins. We believe in general that the study of polymerized objects will help our
understanding of biological systems and processes, e.g. by predicting their favored
geometrical shapes or configurations.

A membrane has a microscopic structure very close at least locally to that of a
two-dimensional lattice, vertices being materialized by atoms and edges by chem-
ical bonds. The simplest model for a membrane we can think of is precisely say
the triangular lattice in R? (see Fig. 1 (a) ). Note that we may introduce irreg-
ularities in the structure of the membrane, such as curvature defects for instance.
In all generality, the membranes are usually defined to belong to either of the two
following classes:

(i) Tethered membranes: these are regular networks, modelled by two-dimen-
sional lattices (c.f. Fig. 1 (a));

(ii) Fluid membranes: these are irregular networks, with arbitrary vertex va-
lencies, and include the possibility for the membrane to form the tessellation
of a surface of arbitrary topology (c.f. Fig. 1 (b), where the membrane has
an underlying surface of genus 1, a torus).

When constructing models for membranes, we may include all sorts of physical in-
gredients that make them more realistic. For instance, introducing the possibility
for the bonds to have short variations in length and attaching an elastic energy
to these variations (bonds are modelled by small springs with a given rigidity con-
stant), it has been possible to predict a geometrical “crumpling” transition [I]
between two very different states of the membranes, either mainly flat or mainly
compactly folded onto itself. Other models “forget” about the microscopic struc-
ture of the membranes and describe them rather as random surfaces embedded in
R3, in a field-theoretic manner. Remarkably, the above-mentioned crumpling tran-
sition was also predicted in this continuous description, both analytically [2], [3],
[4] and numerically [5].
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FIGURE 1. Typical examples of polymerized objects: (a) tethered
membrane, (b) fluid membrane wrapped on a torus, (c) polymer.
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In the present study, we will not go into these technical sophistications, but
rather concentrate on discrete (as opposed to continuous) models for tethered or
fluid membranes with rigid bonds between their atoms, hence which can be viewed
as regular or irregular networks of vertices linked by edges of fixed length. The
only possibility for such a membrane to modify its spatial configuration is through
folding along its bonds, serving as hinges between adjacent faces. Even without
any notion of energy cost for a membrane to change its spatial configuration, there
are a number of interesting questions one can ask, related to how many folded
configurations are accessible, or whether the membrane is foldable at all. We are
going to deal mainly with such questions [6], [7], [8]. To go beyond this would require
including more ingredients than just the geometry of the membrane. Typically one
can attach to each configuration of the membrane a certain energy, function say
of the rigidity of the membrane (it costs some energy to fold a bond), and then
further study the behavior of the membrane when the temperature varies [9], [10],
[11].

The aim of these notes is to present a general mathematical and physical frame-
work for the study of various membrane folding problems, or their one-dimensional
version, the polymer (or protein) folding problem. In the latter, the membrane is
replaced by a chain made of n identical constituents which may be viewed as line
segments of fixed length, in which the joints between two adjacent segments serve as
hinges (see Fig.1 (c)). A fundamental question when dealing with folding problems
is that of self-avoidance, namely: (i) is the object we fold transparent to itself (and
therefore can interpenetrate itself; we then speak of phantom folding), or (ii) does
it have steric constraints that prevent the object from interpenetrating itself (we
then speak of self-avoiding folding). We will see that the effects of self-avoidance on
discrete folding models can be extremely complex: already in one dimension, the
question amounts to solving the “meander” problem and its cousins, one of the few
open puzzles of the past century. Indeed, this is an old problem: it can probably be
traced back to some work by Poincaré (1911), and reemerged in various contexts
since: as mathematical recreation [24], as folding problem [25], [26], in relation to
the 16th Hilbert problem [27], in the theory of invariants of 3-manifolds [2§], in
abstract algebraic terms [31], [32], and in its own right [29], [30].

We will therefore only consider the phantom folding of membranes, the object of
study of Sect.2 (tethered membrane folding) and Sect.3 (fluid membrane folding).
In one dimension, however, phantom folding turns out to be trivial; we will therefore
study the self-avoiding folding of polymers in Sect.4 below. Let us briefly describe
the topics discussed in this paper.

Sect.2 : Tethered Membrane Folding. This first problem boils down to the
study of folding of two-dimensional lattices of vertices linked by edges of given
length, into R?, as particular maps from the lattice to RY. To make the models
tractable, we will impose a discreteness condition that only finitely many local
foldings are allowed. This in turn amounts to imposing that the target space be
a d-dimensional lattice in R%, compatible with the lattice we are folding. After
classifying the foldable lattices and their targets, we will address the problem of
counting the number of folding configurations of a finite portion of the lattice (the
membrane). It turns out that all these problems can be reformulated as coloring
problems on some related two-dimensional lattice (in which edges must be painted
using a given number of colors, with some specific constraints and weights to be
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attached to coloring configurations). This relation between folding and coloring
seems to be quite universal in the subject. We will concentrate on two particular
lattice folding problems, namely when the lattice is the triangular lattice and the
square-diagonal lattice (square lattice with the two diagonals of each square face
drawn). The first problem turns out to be integrable, in the sense that it can
be mapped onto an integrable lattice model, solved by Bethe Ansatz techniques,
namely by diagonalizing explicitly a large (so-called transfer) matrix, encoding all
the combinatorial data of the model. The notion of integrability here means that
the model can be decorated by some parameters in such a way that, although the
above transfer matrix changes, its eigenvectors don’t; the model has therefore an
underlying infinite family of commuting transfer matrices. In the other case, we
will unearth the underlying algebraic structure of the folding model, rephrased as
a so-called fully-packed loop model on the square lattice, and express it in terms
of two copies of the Temperley-Lieb algebra, an essential tool of both integrable
lattice models and link invariants. This algebra is indeed used to define the transfer
matrices of the so-called six-vertex and Potts models on the square lattice, both
integrable. This structural link to integrability is the main and most striking feature
of this study.

Sect.3 : Fluid Membrane Folding. This second problem boils down to the
study of folding of random tessellations of surfaces of arbitrary topology, by use of
irregular networks of vertices linked by rigid bonds. We will concentrate on random
triangulations and work out a generating function for the foldable triangulations,
allowing us to enumerate them for fixed topology and area. This generating func-
tion is constructed by use of an integral over Hermitian matrices of given size N,
computed by diagrammatic techniques borrowed from the theory of the functional
integral. Using this integral representation, we will prove that the generating func-
tion is a solution of some discrete Hirota Bilinear equation, a central object in
the modern study of integrable lattice models. In the large N limit correspond-
ing to genus zero triangulations, this becomes a Hirota Bilinear partial differential
equation of the same type as those found in KdV and KP hierarchies of integrable
systems of partial differential equations. There, integrability means the existence
of an infinite family of commuting flows, describing the evolution in infinitely many
time variables of a function. So again integrability will show indirectly, and in a
different albeit related manner.

The actual folding problem of random triangulations lies one step further and will
only be formulated as a matrix integral, but not solved by lack of good techniques.

Sect.4 : Polymer Folding. This third problem deals with the counting of com-
pact self-avoiding folding configurations of a closed or open polymer. By com-
pact we mean that the polymer must be folded onto just one of its edges, but
self-avoidance means that we will distinguish the various ways in which this is
realized. So, although a one-dimensional problem, the self-avoidance makes it two-
dimensional in the sense that we must follow the path from the initial object to its
compactly folded configuration in a plane. We will start by relating this problem
to that of enumerating meanders, i.e. planar configurations of non-intersecting and
non-self-intersecting loops (roads) crossing a line (river) through a given number of
simple intersections (bridges), up to topological equivalence.

We will present a few of the known formulations of the meander problem: first
in purely combinatorial terms within the framework of the symmetric group, then
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as a Hermitian multi-matrix integral of the same type as that used for counting
foldable fluid triangulations, and finally as the gravitational version of a fully-
packed loop model of the same type as that used in the folding problem of the
square-diagonal lattice. By gravitational, we mean the replacement of the lattice
by a statistical sum over all possible fluctuations of this lattice into tessellations of
surfaces of arbitrary genera. The latter approach proves extremely powerful, though
not completely rigorous, and allows us to predict exact values for the meander and
related configuration exponents in the limit of a large number of bridges.

We will then reformulate the meander counting problem within the framework
of the Temperley-Lieb algebra (the same as above!), and derive various bounds
and estimates, as well as the value of the meander determinant, a meander-related
quantity of interest.

The reemergence of an underlying structure common to many integrable models
is the most remarkable outcome of this study. We are tempted to identify the level of
complexity (and certainly the algebraic structure) of the two-dimensional phantom
folding problems and the one-dimensional self-avoiding problems. In more physical
terms, we will see that the meander problem, i.e. the polymer self-avoiding folding
problem, is nothing but the gravitational version of a lattice model very close in
its definition to the class of lattice phantom folding problems. The correct relation
would be therefore something like: 1D self-avoiding folding = 2D phantom folding
+ gravity. The integrable structure is then simply observed to survive the coupling
to gravity.

2. TETHERED MEMBRANE FOLDING: LATTICES

2.1. Two-Dimensional Phantom Folding. Tethered membranes are regular
two-dimensional networks of vertices connected by bonds. If we assume that the
bonds are rigid, the only way for such an object to change its spatial configuration
is through folding. The abstract definition of folding must match the intuitive idea
that the bonds serve as hinges between their adjacent faces, which remain rigid. By
membrane folding problem, we mean the study of its folded configurations, namely
the final form of the folded network. This means that we are not taking into consid-
eration the different ways of getting to that final state, nor do we require that the
folding state be actually reachable without the membrane interpenetrating itself.
This is usually called phantom folding, as the membrane is transparent to itself
in the folding process. The study of folding of self-avoiding membranes is consid-
erably more difficult, as it requires us to construct the path in three-dimensional
space which connects the flat membrane to its folded configuration. This will how-
ever be addressed in detail in Sect.4 below in the case of one-dimensional objects,
the polymers.

We are now ready for a mathematical definition of folding. We consider a finite
subset S of a two-dimensional lattice of vertices linked by edges (rather viewed as
a graph). A two-dimensional folding configuration of the lattice is a continuous
map p : S — R? which preserves all the lengths of the edges of S. To avoid
over-counting, p is considered up to any translation, rotation and reflection of the
plane.

With this definition, the flat state of the membrane corresponds to p = Id. Next
we must make sure the model is non-trivial, namely that non-trivial p’s exist. This
leads to the notion of foldability. It is clear for instance that any finite subset of
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FIGURE 2. The classification of two-dimensional compactly fold-
able lattices.

the square lattice is foldable, as we might take for p any composition of reflections
wrt lattice lines. To have some physical relevance, a folding problem should have
many distinct folding configurations: this is usually required for allowing interesting
(geometrical) phase transitions. We will actually require that the membrane may
be completely folded onto one of its faces. This restricts very strongly the possible
form of the membrane to be folded: indeed, the corresponding two-dimensional
lattice has only one type of face, together with its finitely many possible rotations
and reflections. We will call this the requirement of compact foldability.
This gives rise to the following classification theorem.

Theorem 1. The two-dimensional compactly foldable lattices fall into the four
cases depicted in Fig. 2, namely: rectangular, triangular, square-diagonal and
double-triangular.

The proof goes as follows. Let us concentrate on a vertex of the lattice. Each
adjacent edge may serve as a hinge in the folding of its two adjacent faces, hence
bissects its two neighboring edges. Moreover, if an edge is folded, it must cross the
vertex; hence the edges are symmetric wrt the vertex. Each vertex v is therefore
the center of a regular star of say 2m,, edges forming angles of 7 /m,,, m, > 2; hence
those angles are either right or acute. The faces are therefore polygons with at most
4 edges, and they can have 4 only if they are rectangles. This is the case where
all m, = 2, the rectangular lattice. Otherwise, all faces must be triangular, with
right or acute angles. Such a face has angles 7/mq, 7/mao, 7/ms, with m; > 2, and
>>1/m; = 1. There are only three solutions up to permutation for (m,mz,ms),
namely

(3,3,3) — Triangular
(2.1) (2,4,4) — Square-Diagonal
(2,3,6) — Double-Triangular

2.2. Entropy of Folding. In the following, we will restrict ourselves to the cases
of Fig.2. The first step in studying membrane folding is to try to enumerate the
folding configurations of each model. Let N = P(Q denote the number of faces
of a rectangular membrane made of P rows of ) faces: in the limit of large P, Q
(the thermodynamic limit) the number of folding configurations Zp g (also called
partition function) is expected on physical grounds to behave as 2"V for some real
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number z > 1, referred to as thermodynamic partition function per face. One also
defines the thermodynamic entropy of folding per face

(2.2) s = ngloo PQ Log Zp,o.

Note that this number does not depend on the precise form of S, provided it
contains arbitrarily large rectangles P x Q. It is characteristic of the number of
ways of folding S for bulky enough S, and depends only on the lattice of which S
is a subset. We have s = Logz.

In the case of the rectangular lattice, we simply have s = 0. Indeed, consider
a rectangle of P x (Q faces. A folding configuration is entirely specified by the list
of all folded bonds. But once a bond is folded, the whole line to which it belongs
must be too. Each horizontal line may be folded or not, as well as each vertical
line: this results in a partition function Zp g = 28792 and we get s = 0. So from
a physical point of view, the rectangular folding problem is not interesting, as it
has too few folding configurations. In the next sections, we study the other models,
which all turn out to have s > 0.

2.3. Formulations as Vertex or Face Models. The folding configurations of a
given lattice are entirely determined by the list of its folded bonds. But these cannot
be arbitrarily folded; they must satisfy a set of local constraints. For instance, the
bonds adjacent to a four-valent vertex may only be in one of the 4 following folding
configurations (i.e. much less than the 24 = 16 possibilities a priori)

| | |
b | | |

where we have represented in thick line the folded bonds. Around a 6-valent vertex
the bonds may be in any of the following 11 folding configurations (to be compared
with the 26 = 64 possibilities a priori)

KKK

where we have indicated the number of distinct rotated configurations. More gen-
erally, around a 2m-valent vertex, the bonds may be in only

(2.5) Vo = 14 <2mm_ 1)

distinct folding configurations. To see why, assign unit vectors g, U1, .., U2m—1
parallel to each edge adjacent to the vertex, and pointing out of the vertex. It is
useful to write them as uj, i € Zo,,, to emphasize that uy = da, and s, 1 are
neighbors. A folding configuration of the vertex is a mapping p : {@;} — {4},
preserving the faces, namely such that the images of two neighboring edge vectors
(W;, ;1) are two neighboring edge vectors, say (@, #;+1). Enumerating these
maps amounts to enumerating the number of sequences of the 2m images around
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the vertex, subject to this constraint. Introducing the cyclic graph As,, with 2m
vertices indexed by i € Za,,, with adjacency matrix

(2.6) Aij =041 +0ji-1 1,J € Zom

with the value 1 if 4 and j are connected by an edge, 0 otherwise, our problem boils
down to the counting of the closed paths of length 2m on As,,. This number is
simply

(2.7) Nop = Tr(A*™).

To find V5,,, we must divide this by the number 4m of choices for the origin and first
step of the path, which amounts to fixing the face adjacent to @y and u;. Fixing the
origin and the first step, there is only one path wrapping around the cycle. All others
are arbitrary successions of clockwise and counterclockwise steps, in equal numbers.
As the first step is fixed say to be counterclockwise, this leaves us with the choice
of the m clockwise steps among the 2m — 1 remaining ones, hence (2%_1) paths,
and (2.5) follows. In view of the classification of Fig.2, we only need to know the
Vy=4, Vg =11, V5 = 36 and Vi2 = 463 vertex configurations. The corresponding
folding problem is a vertex model; namely each folding configuration is obtained by
assigning to each vertex of S one of the allowed vertex configurations in a globally
compatible way, i.e. such that each edge (adjacent to two such vertices) has a well
defined state, folded or unfolded. Note that in the two last cases of Fig.2, the vertex
model is inhomogeneous, as we have two or three distinct types of vertices. This
formulation proves however to be very tedious for both analytical and numerical
studies.

In the following, we will approach all the models in a different way, by first
defining tangent vectors ¢ to the membrane, namely vectors which are parallel to
its edges and with the same length, and oriented in such a way that the sum of
tangent vectors around each face vanishes. For each membrane, there are two
choices of these vectors (up to reversal of all directions). The local face condition

(2.8) Yi=10
face

expresses the rigidity of the faces. By our definition of folding, this constraint must
be preserved under any folding map p; namely we must have

(2.9) Yooy =0
face

around each face of the membrane. This condition is actually a necessary and
sufficient condition for p : S — R? to lead to a two-dimensional phantom folding
configuration of the membrane. In all cases of Fig.2, there are only finitely many
possible images p(t) of tangent vectors, allowing for a reformulation of the problem
as a face model, with finitely many possible configurations of the tangent vectors
around a face. This is much better for both analytical and numerical study.

2.4. Folding of the Triangular Lattice. Let us consider the triangular lattice,
with edges of unit length. With the choice of tangent vectors indicated in Fig.3
(a), a folding of the triangular lattice is a continuous map p : S — R?, preserving
the length of the tangent vectors and satisfying the condition (2.9) around each
triangular face of S. Let ﬂ, t}, 7?3 denote the unit tangent vectors to a given face
of S. Their images p(f;) are three unit vectors with vanishing sum, according to
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(a) (b)

FIGURE 3. A choice (a) for the tangent vectors of the triangular
lattice, together with the corresponding coloring of the edges by
1,2,3. This is the flat configuration of the membrane. A folding
configuration (b) with the corresponding folded bonds (thick black
lines) and edge coloring. The three colors correspond to the three
unit vectors with vanishing sum represented above.

the face rule (2.9). Fixing the image of one tangent vector of S to be a given unit
vector €1, we see that the images of the tangent vectors of S may take only three
values, €1, €3, €3, where €1, €3, €3 are three unit vectors with vanishing sum, hence
forming angles of 27w/3. Let us associate colors numbered 1,2,3 to these three
possible images.

A folding map p of the triangular lattice is therefore a coloring of its edges, with
the three colors 1,2,3, such that the three colors of edges around each face are
all distinct. An example of such a coloring is given in Fig.3 (b) together with the
corresponding folding configuration. The dual of this coloring model is the problem
of tri-coloring the edges of the hexagonal (honeycomb) lattice in such a way that
the three edges adjacent to each vertex are painted with distinct colors 1,2,3. It
has been solved by Baxter [12], by use of the Bethe Ansatz. Baxter’s results yield
in particular the exact value for the thermodynamic entropy of folding per face of
the triangular lattice:

Theorem 2.
(2.10) sp = Log<§r(1/3)3/2>.
T

This was originally proved by explicitly diagonalizing a large (transfer) matrix,
indexed by the coloring configurations of rows of ) edges in the honeycomb lattice,
and describing the “row-to-row transfer”, i.e. the allowed coloring configurations
for two such neighboring rows. The thermodynamic entropy (2.10) is then the
logarithm of the largest (Perron-Frobenius) eigenvalue of this matrix. The diago-
nalization is performed using a particular ansatz for the form of the eigenvectors,
the Bethe Ansatz. The proof of (2.10) being highly technical, we will not repro-
duce it here, but refer the interested reader to the original paper [I12]. Let us simply
mention that this model is part of the class of Two-dimensional Integrable Lattice
Models, for which a Bethe Ansatz solution exists.

2.5. Folding of the Square-Diagonal Lattice. The Square-Diagonal lattice is
made of triangular faces with one “long” edge of unit length and two “short” edges
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\/ \

FIGURE 4. A choice of tangent vectors for the flat configuration
of the Square-Diagonal lattice. The sum rule >.¢ = 0 is obeyed
around each face.

of length 1/4/2. Let us fix a basic (flat) configuration of the long and short tangent
vectors as in Fig.4, such that > ¢ = 0 around each face. A folding configuration is
a length-preserving map p of the tangent vectors preserving the faces. Note that
long vectors are mapped to long vectors.

Actually, the images of the long tangent vectors may only take either of the four
values +¢€;, i = 1,2, where €}, i = 1, 2 is the canonical basis of R2. The folding state
of the lattice is almost entirely specified by the images of these long tangent vectors.
More precisely, we have listed in Fig.5 the various possible arrangements of long
tangent vector images around a given square face of the lattice with long edges.
Here e € {£¢€;} may take 4 values, and f L e the two other values perpendicular
to e. The weight 2 affected to the first configuration is due to the existence of two
possible inner tangent vector configurations compatible with the long one. Indeed,
if e = ¢} and f = €5 for instance, then the short edges of an inner triangular face
must have images (—(e + f)/2,(f — e)/2) or vice versa, which gives two distinct
configurations. This gives rise to 28 distinct configurations of the long edge vectors
around a square face.

We may now rephrase the folding problem into a coloring problem, by attaching
a color ¢ = 1,2 to each long tangent vector with image +¢€;. Let us also consider the
square lattice dual to that of long edges in the initial Square-Diagonal lattice. We
can view the above face model as a dual vertex model with the allowed configura-
tions of Fig.5, in which the edges of the square lattice are colored with colors 1 or 2.
Once the color i of a long edge is specified, we still need to specify the sign e = +1
determining the tangent vector e€;. Looking at Fig.5, we see that the sign is the
same on all edges in the first configuration, the same on all edges of the same color
in the second and third, and is flipped at the crossing with a line of opposite color
in the fourth. This means that the value of the sign € on an edge determines that
on the whole cluster of same color connected to it. We therefore need to introduce
an extra weight of 2 per colored cluster. Note that, independently, the first vertex
still receives a weight 2.

The total number of folding configurations of the Square-Diagonal lattice there-
fore reduces to the sum over colored edge clusters on the square lattice (with two
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face N R DU
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configuration AN . s

o
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weight 2 1 1 1
degeneracy 4 8 8 8
€ n £ n
vertex e l € € n e n € ¢
configuration I ;
€ € Tl —.T]

F1GURE 5. The 28 possible configurations of long tangent vectors
around a large square face. We have e L f. We have indicated by
short solid (resp. dashed) lines the folded (unfolded) inner short
edges. We have also listed the weights attached to each configura-
tion: the weight 2 for the first one corresponds to the two possible
choices of inner short tangent vectors compatible with the sum rule
(2.9). The degeneracy, i.e. the number of distinct configurations,
is also indicated, leading to a total of 28 face configurations. In the
last line, we have represented the dual vertices, with colors 1,2 in
solid and dashed lines, and the signs +e, +n of the corresponding
tangent vectors.

colors i = 1,2)

(211) VA sp = Z 2# clusters 2# 4-crossings

colored clusters
where each cluster receives a factor 2 and each “four-crossing” of edges of same
color receives a weight 2.

The formulations as face or vertex model allow for many exact bounds and a
numerical study of the entropy of folding, estimated as s gp =~ .2299.... In the next
section, we give yet another formulation of the model as a gas of fully-packed loops,
very similar to a well-known integrable model.

2.6. Fully-Packed Loops, Temperley-Lieb Algebra and Square-Diagonal
Folding. Let us again look at the folding configurations of the Square-Diagonal
lattice, but this time let us concentrate on the images of the four short edges inside
each large square face. The images of the short edges determine the folding state of
the membrane completely, through (2.9). But these are still constrained as follows.
Let us introduce the basis fi = (€1 + &2)/V2, fa = (€ — &1)/v/2 of R2.

(i) the two short edge vectors around each face must be perpendicular, i.e., one

of them is equal to :I:f_i and the other to :l:f;.
(ii) any two adjacent triangular faces sharing a long edge have short edges with

either of the two possible images below corresponding respectively to an un-
folded or folded long edge.
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> > > >

u v u u
(2.12)

> > > >

\4 u \ 4 A\

Each of the short edges has an image tangent vector of the form e ﬁ, with e = 1.
Let us again associate the color i (€ {1,2}) to such an edge. According to (ii), there
are two possible coloring configurations of the short edge vectors on two triangles
sharing a long edge. Instead of representing the painted short edges, let us represent
their duals in the dual of the square lattice formed by the short edges, using solid
lines for color 1 and dashed lines for color 2. At a joint between two triangles
sharing a long edge, the two possibilities of (ii) (2.12) translate into

(2.13) or

or the same pictures with the colors interchanged. This takes care of the colors,
but we also have to specify the sign € in ¢ = eﬁ. From (2.12), it is clear that this
sign propagates along edges of the same color.

So finally, the folding problem of the Square-Diagonal lattice may be rephrased
as a model of loops of two colors, obtained by covering the faces of the long edge
lattice (denoted by S) by either of the two configurations

AN /7
\ /7
(2.14) or
\ /7
\ /7

and by attaching a weight 2 per loop of a given color (accounting for the two choices
of signs along that loop). We prefer the terminology “loops”, rather than “lines”,
but this depends on the boundary conditions we impose to our portion of P x Q)
lattice faces. If we impose periodic boundary conditions, by identifying the right
and left long edges on one hand and the top and bottom long edges on the other,
the solid and dashed lines indeed form loops on the torus. Moreover, these loops
are called fully-packed, as each middle of the edges of the original faces is visited by
one loop of each color. The bulk result about the thermodynamic entropy should
not depend on boundary conditions, so this choice is licit. With these choices, the
counting function (2.11) becomes

Zsp = Z 9N1+N2
(215) coverings of S

with or
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where N; denotes the number of loops of color 4 in a given coloring configuration.
This new expression (2.15) gives access to more exact bounds on the thermodynamic
folding entropy.

Here we will rather concentrate on the algebraic structure underlying this model.
Let us slightly generalize the model (2.15) by replacing the factors of 2 by a factor
B per loop of color i. This leads to a “partition function” Z gp(f1,2). This is
actually a two-color generalization of the Dense Loop model, defined as the same
model, without the edges of color 2, namely with partition function

ZoL(B) = > B

(216) coverings of S

with Q or G

where L denotes the total number of loops formed by the edges of color 1. This
model plays a very important role as a sort of archetype of two-dimensional inte-
grable lattice model, due to its underlying Temperley-Lieb algebra structure.

Let us now give the pictorial representation of the Temperley-Lieb algebra
TL,(6), made of simple dominos and their linear combinations. By domino, we
mean a rectangle with a top and bottom row of points labelled 1, 2, ..., n, and pair-
wise connected among themselves through n non-intersecting curves. Two dominos
dy and dy are multiplied by concatenation (by putting d; on top of dz), and by iden-
tifying the bottom points of di with the top points of do. Whenever a contractible
loop is formed inside a domino, we may erase it and replace it by a factor 5. The
algebra T'L,,(0) is the extension of the set of dominos by linear combinations. The
algebra is generated by the identity domino, connecting the upper and lower points

by vertical lines, and by

(2.17) e = m

' '
' '
' '

1 i i+l n

fori=1,2,...,n—1. To make contact with the Fully-Packed Loop model above, let
us represent the part of e; not acting like the identity as a square “face” operator

(2.18)

= 131®---Q01Qe®lIRI®---®1

where the face operator e acts on the i-th and (i 4+ 1)-th lines, by connecting them.
The definition (2.18) makes transparent the following algebraic relations satisfied
by the e;’s
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FIGURE 6. The first and second relation of (2.19).

e = Be
(219) €;6;+1€; — €4
eie; = eje; for|i—j|>1

easily checked pictorially.

The first relation in (2.19) is consistent with the weight 5 per loop in (2.16):
as shown in Fig.6, we can erase the loop formed by e? and replace it by a factor
8. The second relation expresses that one can “pull” the black lines, as illustrated
in Fig.6. The last relation simply expresses the locality of the action of the face
operator at lines 7 and 7 + 1.

To write the partition function of the dense loop model, we introduce a diagonal
zigzag-to-zigzag transfer matrix

Ty = Us Vp
P—-1
(2.20) Us = JJ(1+e)
i=1
P
Vg = H(1+621—1)
=1

The partition function of the model on a strip of width 2P and height 2M, counted
in numbers of lines (with N = 4PM, as the total number of faces of S is N/4 =
PM), with periodic conditions along its width 2P boundaries reads

(2.21) Zon(B) = Te(TM)

where the trace is the standard trace on the Temperley-Lieb algebra T'Lap(0),
defined recursively by Tr(1) = 3?F and the recursion relation (Markov property)

(2.22) Tr(eiHE(el,eg, ...,ei)) = % Tr(E(el,eg, ...,ei))

for any expression E depending on the ey, k < i only. With this definition, (2.21)
is calculated by simply first expanding 7™ as a sum of products of e’s and 1’s, each
corresponding to one covering of the faces of S (now tilted by 45°) with either

(2.23) e or 1

Then we identify the top and bottom of the lines along the horizontal zigzag bound-
aries, and replace each loop by a factor of 3, thus realizing exactly the sum in (2.16).
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The abstract definition (2.19) of the algebra of the e’s makes it possible to cal-
culate (2.21) by choosing a particular representation for the algebra. A particular
choice relates it to the partition function of the 6 Vertex model [I5], solved with
standard Bethe Ansatz techniques. This gives an exact formula for the thermody-
namic entropy per site of the dense loop model [15]

[z sinh(r—p)z_tanhpe g, 83— 9cosp, O<p<m

00 2z sinh7x
(2.24) sg = {5+ e;:A tanhnA for B =2coshA, A>0
2 Log er,(é)) for g =2.

This takes care of all the values of 3 > 0. The value = 2 is critical, as it lies at
the transition between two regimes. Note that there are N/4 sites in the model, as
there are 4 triangles of the original square-diagonal lattice on each face of S. The
entropies per triangle are therefore those of (2.24) divided by 4.

The exact solvability of this Dense Loop model can be understood as follows.
Defining W;(z) = 1 + ze;, we check that the Yang-Baxter equation

(2.25) Wi(@)Wita (zy)Wiy) = Wipa(y)Wi(zy) Wi (2)

is satisfied, as an immediate consequence of the relations (2.19), if and only if
a(z) = (x —1)/(z — x/z) for any solution z of z 4+ 1/z = § and up to any rescaling
r — 27, 7 € R (note that this includes the “rational” limit z = e, z = e3,
e — 0; hence 8 =2 and a(z) — r(u) = u/(1 —u)). We also have the normalization
condition W;(x)W;(1/x) = I. These two relations ensure the existence of a one-
parameter family of commuting transfer matrices T'(x), with [T'(x), T'(y)] = 0. This
justifies the existence of a common basis of eigenvectors for these, independent of
2. That a Bethe Ansatz should yield them is not guaranteed, although it seems to
be the case in all the known situations. In the present case, it may be viewed as a
consequence of matrix functional relations satisfied by T (algebraic Bethe Ansatz).

Going back to the loop formulation of the Square-Diagonal folding problem,
namely the Bi-Colored Fully-Packed-Loop model with partition function
Zsp(f1, B2), we can express the transfer matrix of the model in terms of two
Temperley-Lieb algebras, one for each color of loop. Tilting the lattice S by 45
degrees, we are led to the introduction of the following face operators:

Il
=~
®
=
®
®
=
®
=
®
o
®
=
®

(1®1)...(11)

(2.26)

fi

(

>

=(1®1])®.91)e(1lee)®(1®1)..(1®1)

acting on a set of 2P pairs of parallel lines of color 1 and 2 (in each parenthesis
of (2.26), the first term of the tensor product corresponds to the color 1 and the
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second to the color 2; note also that by a slight abuse of notation 1 ® e really means
(1® 1) ® e, acting on the two pairs of consecutive lines of position ¢ and 7 + 1 of
respective colors 1 and 2).

We see that the operators e; and f; satisfy the relations (2.19) for respectively
TLop(f1) and TLop(B2), whereas [e;, f;] = 0 for all ¢,5. We can now define the
zigzag-to-zigzag transfer matrix

T =UV
P
(2.27) U = H(62i+f2i)
i=1
P

V = H(eQi—l + fai—1).
i=1
The partition function for a portion of size 2P x 2M of the square-diagonal lattice
on a cylinder can be finally expressed as

(2.28) Zsp(B1,B2) = Te(TM)

by imposing periodic conditions along the horizontal zigzag boundaries. In (2.28),
the trace is defined for a tensor product of any two elements E € T'Lop(61) and
F € TLyp(fB2) as Tr(E ® F) =Tr(E) Tr(F'), and extended by linearity.

The above remark about the independence of Zpy,(3) on the particular represen-
tation chosen for e; is still valid here, and extends to the choice of representation
for f; as well. This would enable us for instance to map the model onto a pair of
coupled 6 Vertex models (the 28 vertex model of the previous section is an example
of such a mapping).

The analogy with the Dense Loop model however stops here, as we have not been
able to find a one-parameter family of commuting transfer matrices for the Square-
Diagonal folding problem. It is nevertheless a remarkable fact that its underlying
algebraic structure consists of two copies of the Temperley-Lieb algebra, with both
critical parameters 0 = f2 = 2. However, the model can still be studied in the
continuum thermodynamic limit, where we take simultaneously the lattice spacing
to zero while the dimensions of the piece of lattice M, N tend to infinity. It can then
be shown to be described by a conformal field theory with central charge ¢ = 2,
for the folding problem 3; = f; = 2, and more generally ¢ = 2 — 6(ef/(1 — e1) +
e3/(1 — e2)) for B; = 2cose;.

2.7. Folding of the Double-Triangular Lattice. The double-triangular lattice
of Fig. 2 has three types of edges: long, medium, and short of respective lengths 2,
V3, and 1. Each triangular face has one edge of each type. As usual, we introduce
tangent vectors along these edges, with compatible orientations throughout the
lattice, so that the face rule (2.8) is satisfied around each triangular face.

A folding configuration of the lattice is a continuous map p of these tangent
vectors to the plane, such that the face rule (2.9) is satisfied around each elementary
triangular face. Let us now first concentrate on the long edges of the double-
triangular lattice. They form the Diamond lattice, represented in solid lines in
Fig. 7, which is dual to the Kagomé lattice, represented in dashed lines in the same
figure.

By inspection, it is easy to see that the images of the long edge vectors may
take only one of the six values +€7, +€5, +€3, where the ¢€; are three fixed vectors
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FIGURE 7. The diamond lattice formed by the long edges of the
double-triangular lattice (solid lines) and its dual, the Kagomé
lattice (dashed lines).

of length 2 with vanishing sum (hence forming angles of 120°). As before, writing
these images as

(2.20) ol = e

suggests attaching a color ¢+ = 1,2, 3 to each long edge, and a sign e = £1.

In a way very similar to the square-diagonal case, the long edges around any
diamond-shaped face of Fig. 7 may take only the four possible relative values
depicted in Fig. 8, according to the folding state of the inner short and medium
edges. Note the weights: 1 for the last three cases of Fig. 8, as the inner edges are
entirely fixed, and 2 for the first case, as we have two choices for the inner short
edges § = €€j./2, k # i, which then fix all other inner edges. Each long edge may
take 6 values. This gives a total of 78 distinct possible diamond face environments.

We may now rephrase the folding problem as a Vertex model on the edges of the
dual Kagomé lattice of Fig. 7, with the vertices derived from Fig. 8. Hence the
model is equivalent to a colored cluster model with the vertices of Fig. 9, similar to
that of the last line of Fig. 5, but this time with 3 edge colors, and with a weight
2 per vertex of the first type, and an extra weight of 2 per cluster of a given color.

£e; £ey €eg ge;
£e; Gej (Sej -£¢

2 1 1 1

F1cURE 8. The four possible configurations of long edges around
a diamond-shaped face. We have represented in dashed lines the
(medium or short) unfolded inner edges, and in solid lines the
folded inner edges. We have also indicated the attached weights.
The color indices take the values ¢, = 1,2,3, with ¢ # j, and €, 0
are arbitrary signs.
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F1GURE 9. The allowed vertices of the tri-colored cluster model on
the Kagomé lattice, equivalent to the two-dimensional DT folding
problem. The solid and dashed lines stand for any two distinct
colors among {1,2,3}. We have indicated the weight under the
three corresponding vertices. Each colored cluster has an extra
weight of 2, for the two choices of sign.

2.8. Higher Dimensional Folding. So far we have only discussed two-dimen-
sional folding, by requiring that the image of the folding maps p be in R?. Relaxing
this condition by considering higher-dimensional target spaces R?, d > 2, we obtain
infinitely many possible maps, even on a finite subset S of the lattice we are folding.
However, we would like to still deal with discrete models, having finitely many
folding configurations for finite S. This can be obtained by restricting the image
of the membrane under a folding map to be a subset of a d-dimensional lattice,
compatible with the membrane structure. Again, we view the target lattice as a
regular graph, i.e. as a set of vertices connected by edges.

By compatible, we mean that the target d-dimensional lattice contains the 2-
dimensional lattice we are folding, and allows for folding configurations which are
truly d-dimensional (and not included in a space of lesser dimension). Let us
describe the target lattices we know to be compatible with the square, triangular,
square-diagonal and double-triangular membranes of Fig. 2.

Square Lattice: The target is the d-dimensional hyper-cubic lattice (HC on
Fig. 10), but the model is still easily seen to have a vanishing thermodynamic
entropy. Indeed, if an edge is folded by a certain (right or flat) angle, then the
whole line it belongs to is folded. So the number of folding configurations of a
rectangle of P x @ faces is certainly less than (2(d - 1))P+Q72; hence the limit
(2.2) vanishes.

Triangular Lattice: The target is the d-dimensional Face Centered Cubic lat-
tice (FCC on Fig. 10) defined as follows. We start from the basis f; = &/v/2,
i=1,2,...,d of R%, expressed in terms of the canonical basis. We then form the
unit cell of our lattice by joining the vertices at =+ ﬁ with edges along the unit
vectors + f; + f;: the result is the d-dimensional generalization of an octahedron
(for d = 3), with 2d vertices, 2d(d — 1) edges and 4d(d — 1)(d — 2)/3 equilateral
triangular faces of unit edge. The lattice is then generated by translation of this cell
by integer multiples of the vectors + f; + f;; As we have increased the possibilities
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DT FCDT

FIGURE 10. The d-dimensional lattices compatible with the fold-
ing of the membranes of Fig.2 are represented for d = 3. They
are the Hyper-Cubic lattice (HC) compatible with the square lat-
tice; the Face-Centered Cubic lattice (FCC), compatible with the
triangular lattice; the Hyper-Cubic Diagonal (HCD) and Face-
Centered-Hypercubic-Diagonal (FCHD), both compatible with the
Square-Diagonal lattice; the Double-Triangular (DT) and the Face-
Centered-Double-Triangular (FCDT), both compatible with the
Double Triangular lattice.

of folding of the two-dimensional membrane, the entropy has increased and is still
non-zero.

As usual we choose the orientations of the tangent vectors on both the membrane
and the target so as to satisfy (2.8). A folding configuration is a map p from the
membrane to the target tangent vectors satisfying (2.9). The images of tangent
vectors around a triangular face of the membrane must take values of the form

(6}

efi+o f;

or dually

(2.30)
—ef+1fy —o fi—tfy —€ X {0

with 4,7, k all distinct, and €,0,7 = £1. Hence the d-dimensional FCC folding
problem can be rephrased as a fully-packed (FP) colored loop model on the hexag-
onal lattice (dual to the membrane) with d colors ¢ = 1,2, ..., d, in which all edges
are occupied by two loops of distinct colors. The signs of the corresponding compo-
nents of the tangent vectors are completely fixed along each such loop by the value
on one edge of the loop; hence this results in a weight 2 per colored loop (for the
two choices of signs). Finally
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(2.31) Zd-FCC = Z 2N1+N2+...+Nd

FP colored loops

where N; denotes the total number of loops of color ¢ in a given configuration.
Notice the analogy between (2.31) and the two-dimensional Square-Diagonal folding
partition function, except that (2.31) only makes sense for d > 3, for configurations
like (2.30) to be allowed (with 7 # j # k).

Square-Diagonal Lattice: We have found two different candidates for the
target, depending on whether the emphasis is put on long or short edges, namely
the Hypercubic-Diagonal (HCD in Fig. 10) and the Face-Centered Hypercubic-
Diagonal (FCHD in Fig. 10).

The HCD lattice is built by first forming a hypercubic lattice with unnormalized
orthogonal basis €1, ..., &; of edges of length 1/4/2 (short edges), and then drawing
exactly one diagonal (long edge of unit length) on each of its square faces, in a
consistent way so as to allow for non-trivial folding maps from the square-diagonal
lattice to the d-dimensional HCD. Let us choose an orientation of the tangent
vectors satisfying (2.8) on both the membrane and the target. A folding map p is
entirely determined by the images of the short edge vectors, of the form p(f) = €€},
1=1,2,...,d, e = £1. Let us assign a color i = 1,2, ...,d to such an image. As the
two short edges of a triangle must remain orthogonal, the colors of their images must
be distinct. Moreover, in this model, the long edges are either completely folded
or not folded at all, as no intermediate angle is allowed by the target. Therefore
we still have the only two possibilities (2.12) for the relative values of short edge
vectors in two triangles sharing a long edge, except that now @ = €€; and v = o€},
with ¢ # j and €,0 = £1. Just like in (2.14), we may rephrase the model in the
dual form as a loop model with colors i = 1,2, ..., d, obtained by covering the faces
of the long edge square lattice S by configurations of the form

(2.32) <

where the dual edges are painted with colors distinct from that of their neighbors,
when going clockwise around the face (namely i # j, j # k, k # 1, [ #4). It is easy
to see that this gives rise to d(d — 1)(d? — 3d + 1) distinct coloring configurations
like (2.32), but we must also fix the four signs of the edges, hence a total of V; =
16d(d—1)(d* —3d+1) edge configurations. Moreover, the transitions from a face to
an adjacent one result only in the two possibilities of (2.13), but now with any two
colors i # j among 1,2, ..., d. The signs are easily seen to be completely determined
along each colored loop by just one of them. We must therefore have a weight 2 per
colored loop to account for the two choices of signs. With these rules, the partition
function of the d-dimensional HCD folding problem reads

(2.33) Z 4.HCD = Z 9N1+N2+...+Ng

coverings of S
with (2.32)

where IV; denotes the total number of loops of color ¢ in a given coloring of the dual
short edges in S.
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The FCHD lattice is obtained by first building the hypercubic lattice with or-
thonormal basis €;, i = 1,2,...,d of unit long edges, and then drawing the two
diagonals on each square face, thus forming short edges of length 1/ V2. Let us
choose an orientation of the tangent vectors satisfying (2.8) on both the membrane
and the target, and let us concentrate on the images of the long tangent vectors
to the membrane. Those take values of the form p(f) = €é;, i = 1,2,...,d, ¢ = £1.
The four images of long edge vectors around a face of S still take only the values
of Fig. 5, but with e = e¢; and f = o€}, with ¢ # j, and the first configuration,
where all four images are equal corresponds now to 2(d — 1) possible configurations
of inner short edges. Indeed, those may take any values of the form (& —€€;)/v/2,
where k # i, with alternating signs when we go around the face. Moreover, the
degeneracies become respectively 2d for the first configuration and 4d(d — 1) for
each of the other three. This leads to a total of W; = 2d(6d — 5) possible face
configurations, hence in the dual picture to a Wy-Vertex model (c.f. the last line of
Fig. 5), in which the dual of long edges are painted with a color ¢ = 1,2, ...,d, and
signs propagate along clusters of given colors and are flipped at each crossing like
in the fourth configuration of Fig. 5. This gives a factor of 2 per cluster, for the two
choices of sign. In that last formulation, the partition function of the d-dimensional
FCHD folding problem reads

(234) Zd-FCHD _ Z 2N1+N2+-..+Nd(2(d_ 1))0

colored clusters

where N; denotes the total number of clusters of color 7 in a given cluster configu-
ration, and C' is the total number of “four-crossings” (i.e. when the four adjacent
edges to a vertex have the same color).

Note that (2.33) is the natural d-dimensional generalization of (2.15), whereas
(2.34) is the generalization of (2.11). That the two models coincide at d = 2 gives
two distinct points of view, leading in particular to various bounds and estimates
of the folding entropy [13]. We see also that for large d, the FCHD model is more
economical, in that we only have to sum over W(f Q configurations to evaluate
(2.34), to be compared with VdPQ >> W;Q in the HCD case (2.33).

Double-Triangular Lattice: We have found again two possible targets, the
d-dimensional Double-Triangular lattice (DT in Fig. 10) and the d-dimensional
Face-Centered Double-Triangular lattice (FCDT in Fig. 10).

The d-DT lattice is obtained from the d-FCC lattice by drawing exactly one
height in each triangular face, in a consistent way so as to allow for non-trivial
foldings. Note also that the d-FCC lattice must be dilated by a factor of 2 to
ensure that the long edges have length 2, the medium /3 and the short 1. Let us
attach tangent vectors to the edges of both the DT and the target d-DT lattices,
subject to (2.8). A folding map p maps tangent vectors to tangent vectors, and
satisfies (2.9) around each face. We may again visualize a folding configuration
as a map on long and short tangent vectors. Indeed, medium edges can only be
either completely folded or not folded at all. Moreover, a long edge image has
the form p([) = e¢;+o€;, 1 < i # j < d, where the é&;’s form an orthogonal
basis of RY, with lengths v/2 and ¢,0 = 41, and a short edge image has the form
p(8) = (e€; 4+ 0¢€;)/2. This results in the following four possible long and short edge
images around a diamond face of long edges. When the medium edges are flat, we
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have
(‘l: ey GCJ)/Z (’Cek- GEJ)/Z
/ (Sej+nem /—Tek+nem
(235) Sei'K)'ej Tetn ey or Eei+6ej —cej+nem
gejtTey - gej+Tey
(oe;- Tex)/2 (cej Tey)2

with 1 <i#j#k<dandl1<j#k#m<d(mcan be equal to i), and
€,0,7,n = +1. When they are completely folded, we have

(T ey GeJ)/Z (T ey Ge,)/z
/ oejtnen /—‘cek+nem

(2.36) gejtoe;— ~— oejtnen or gej+oe; — -— —TepHne,

8ei+08j / eeiwej /
(tey oe;)/2 (e oe;)/2

with the same restrictions.

This face model may be reformulated on the dual of the diamond lattice of
long edges, namely the Kagomé lattice of Fig.7, as a colored cluster model, in the
same spirit as Fig.9. Indeed, let us attach to each long edge image of the form
p(Z) = €€; + 0€; a pair of colors (ij), 1 <i# j < d. We may now paint the duals of
the long edges (i.e. the edges of the Kagomé lattice) with these pairs of colors: just
think of each edge as two superposed lines, one of color i and one of color j. The
allowed vertices are depicted in Fig.11, in correspondence with (2.35)-(2.36). The
indicated weights correspond to the free choices of short and medium inner edge
images, which are clear from (2.35)-(2.36). Moreover, each colored line ¢ carries a
sign (that in front of & in the corresponding image), which is preserved under a
right or left turn, and flipped at the crossing with a line of different color. A simple
counting argument leads to a total of 4d(d — 1)(8d? — 36d + 41) possible vertices on
each of the three subsets of vertices of the Kagomé lattice corresponding to different
orientations of their adjacent edges.

To evaluate the partition function of the d-DT model, we must sum over all
possible colored cluster configurations on the edges of the Kagomé lattice, allowed
by Fig.11 and its two rotated versions under £120°, including the extra weights
indicated, and also with a weight 2 per cluster of a given color, to account for the
two choices of signs. This gives

(2.37) ZapT = > oN1HNat-ANa(9(q — 3))24b(4(d — 2))°

colored clusters

where N; denote the numbers of clusters of color 7 in a given configuration, whereas
a, b, c denote the numbers of vertices of the third, fourth and fifth type in Fig.11,
as well as their rotated versions by £120°.

The d-FCDT lattice is also made of the d-FCC lattice, on the triangular faces of
which all three heights have been drawn, creating three inner short and long new
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FiGure 11. The Kagomé lattice colored cluster model dual to
the d-DT model. The edges are colored with pairs (ij) of colors
1 <i# j <d. In the first and second vertices, we have 1 < i #
j#k<dand 1<j+#k#m<d, and it is possible that m = i.
In all the others the color indices are all distinct. Each colored line
also carries a sign, which is preserved under a left or right turn,
and flipped at a crossing with a line of different color. We have
indicated the extra weights arising from the free choices of inner
short and medium edge vectors.

edges, and cutting the edges of the d-FCC into two medium ones. Note that this
time we must dilate the d-FCC lattice by a factor 2v/3 to ensure that long edges
have length 2. Let us as usual choose tangent vectors subject to (2.8) on both the
membrane and the target.

Denoting again by é; an orthogonal basis of R? with vectors of length \/3/_27 we
may write the images of the medium edges under a folding map p as p(m) = eé; +
o€y, withe,o = £1,and 1 <14 # j < d. Note that the short and long edges may only
be either flat or completely folded, from the structure of the target. This therefore
gives rise to the 11 possible arrangements of medium edges around each triangular
face of the triangular lattice formed by the medium edges, depicted in Fig.12. Note
that these 11 arrangements match the 11 vertices (2.4): they just represent the
folding state of a face of the triangular lattice of medium edges of the membrane.
The weight 4(d — 1) for the last configuration is the number of possible triangles
with one edge of each type and a specified medium image say p(m) = e = e€; +0¢€j.

=

The long edge must have an image of the form p(¢) = —2(2¢é; + o€ + T€)/3 or
—2(e€; + 20€; + 71€1)/3, with 1 < i # j # k < d, and 7 = %1, and the short
edge image is then completely fixed by (2.9). These give twice 2(d — 2), hence the
total weight 4(d — 2). A simple counting shows that there are 8d(d — 1)(7d — 13)
distinct face configurations for the medium edge images, hence sensibly less than in
the d-DT case. As before, the model could be rephrased as a colored cluster model
with specific weights, but the corresponding expression for the partition function is
not simple.

The various reformulations of the d-dimensional folding problems of this section
give access to many analytic bounds for the thermodynamic folding entropies, and
allow for numerical studies as well. It would be interesting to further study the
algebraic structure of the corresponding vertex models. This remains to be done.
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(x1) (x3) (x3) (x3) (x1)
1 1 1 1 4(d-2)

FIGURE 12. The eleven face configurations for medium edges in
the d-FCDT model. The folded (resp. flat) short and long edges
are represented in thick solid (resp. dashed) lines. The medium
edge vectors take values e, f, g of the form e€; +0€;,1 <i# j <d
and €,0 = £1. We have e+ f+ ¢ = 0 in the first configuration, and
there exists a g of the same form, such that e+ f+g¢ = 0 in the next
two. We have indicated the weight of each configuration, obtained
as the number of possible short and long edge images compatible
with the assignment of the medium ones.

3. FLUID MEMBRANE FOLDING: TRIANGULATIONS

Fluid membranes are modelled by irregular networks of vertices linked by edges,
in which the valencies of the vertices are arbitrary, as well as the genus of the un-
derlying surface, which might have an arbitrary topology. The study of such mem-
branes is best performed within the context of random surfaces and two-dimensional
quantum gravity (for a review, see [I7] and references therein).

Two-dimensional quantum gravity can be viewed as the coupling between a two-
dimensional system (say a two-dimensional lattice model, with its configurations
and weights), and the fluctuations of space, namely by allowing the underlying lat-
tice to fluctuate into irregular networks of arbitrary topology. A configuration of the
system is then a particular choice of such a network, together with a configuration
of the physical model defined on this particular network.

Hence we may view the folding problem of fluid membranes as the two-dimen-
sional quantum-gravitational version of the folding problem of regular membranes.

3.1. Triangulations and Foldability. Now and in the following, we consider
the toy model for fluid membranes, formed by arbitrary triangulations of surfaces
of arbitrary topology, by means of equilateral triangles. The fluidity is rendered by
the fact that any number of triangles may be adjacent to a vertex. In the spirit of
the above, we are therefore dealing with the quantum-gravitational version of the
triangular lattice.

We wish now to study the folding of such membranes, defined as before as
continuous folding maps preserving the faces of the triangulations. To ensure the
existence of interesting folding configurations, we will impose as in the lattice case
that the membrane be foldable completely onto one of its faces, namely that there
exist a folding map with image a single triangle. With this constraint, it is clear
that not all triangulations turn out to be “foldable”. Indeed, let us paint by three
distinct colors 1,2, 3 the three vertices of the image triangle, and paint accordingly
the vertices of the preimages under the folding map. This results in the tri-coloring
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of the vertices of the initial triangulation, in such a way that the three colors around
each triangular face are distinct. So only the vertex-tri-colorable triangulations will
be foldable.

Another way of viewing this restriction is to recall that we first need to attach
tangent vectors to the edges of the triangulation in such a way that (2.8) is sat-
isfied. It is straightforward to see that this is possible only if the vertices of the
triangulation are all even, as around such a vertex, we must have an alternance of
tangent vectors pointing to and from it. This condition turns out to be sufficient in
genus zero to grant the tri-colorability of the triangulation. The situation in higher
genus is unclear [16].

In the next sections, we will introduce a generating function for tri-colorable
triangulations in arbitrary genus. This will be done by use of a Hermitian multi-
matrix integral, whose formal series expansion can be interpreted as a sum over
tri-colorable triangulations. Let us state the main results before going into the
detailed proofs. We will study the generating function

f(x1, 22,235t N)

1 A(T)
3.1 = E ot N229(D) pua(T) e (T) pvs(T) 25
31) | Aut(T)| A

connected tricolorable
triangulations T'

where the sum extends over all connected vertex-tricolorable triangulations, and
g(T),v;(T), A(T) respectively stand for the genus, the total number of vertices of
color 4 and the total number of faces (area) of the triangulation T. The division
by the order of the symmetry group of the triangulation is standard and avoids
overcounting. Introducing

. fe — z1,@2,x3;t;N
(3.2) Z(x1, w0, w3;t; N) = ef (@1,w2,m3;6:N)
we will express Z as an integral over Hermitian matrices, whose formal series ex-
pansion will be a sum over possibly disconnected triangulations. Our main result

is the following

Theorem 3. The partition function Z (3.2) satisfies the following discrete Hirota
Bilinear equation

t

’I’LN Zn+1(a +1,b+ 1) Zn_l(a, b)

(3.3) = Zn(la+1,b4+1) Z,(a,b) — Z,(a,b+ 1) Zp(a+1,b)

provided we define a = Nx1, b= Nxo, n = Nx3 and Z,(a,b) = Z(x1, x2,x3;t; N).

We also have the following simple result for

. 1
(3.4) Jo(w1, 22, 235t) = lim mf($17$2,$3;t;N),

N—o0

the genus zero contribution to the generating function (3.1).
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Theorem 4. The generating function fo(x1,22,x3;t) for genus zero connected
vertez-tricolored triangulations reads

(35) f,(tat)zfo(l‘l,l‘g,.ﬁg;t) =

Fl(l—FQ—Fg) = tﬂ?l
FQ(]._F?,_Fl) = t:L'Q
Fg(]. —F1 —FQ) = t:L‘g

3
Fi(x1,z9,23;t)

<
—

where F;(x1,T2,23;t) = tx; + O(t?) are formal series of t with polynomial coeffi-
cients of the x’s.

3.2. Matrix Models and Graphs. Hermitian matrix integrals are a powerful
tool to construct generating functions for random tessellations of Riemann surfaces
of arbitrary topology (see [I7] for a review). For any polynomial or formal series

V(z) = % +2 s ti “’7, let us consider the following integral over N x N Hermitian
matrices M
1

(3.6) Z(V;N) = 7o

/ dM =N TV (M)

with the standard Haar measure dM = HKjd Re M;; d Im M;; [ [, dM;;, and a

normalization factor Zy(N) such that Z(Vp; N) = 1, where Vp(z) = % The
integral (3.6) is understood only as a formal power series of the ¢;’s, the coefficients
of which are well-defined Gaussian integrals. We will not be concerned with issues
of convergence here.

To compute the integral (3.6), we therefore have to expand the ¢-dependent part
of the exponential as a power series, and to compute the coefficient say of []¢;?, of

the form

1 B M2 ' Tr(Mi)vi
. M N Tr( )szz .
(8.7) Zo(N) / dMe ’ H o]
Let us denote by (f(M)) = [dMe™N Tr(%)f(M)/ZO(N) the Gaussian average of
f. Note that (M;;) = 0 and that (M;; M) = 6;50:/N. More generally, for any
N x N Hermitian matrix S, we have

(3.8) (e HEM)Y — ¢an Tx(5?)

Therefore we deduce that
o0 0 s

= ez2N

2k—1i2k> - ’
831‘21‘1 831‘41'3 8‘81‘27&'27%1 S=0

(3.9) (M5, Miyi,...M;

To get a non-zero answer in (3.9), the derivatives wrt entries of S must be taken
by pairs of the form Js,,0s,,, each of which extract a factor of 1/N from the
exponential. Indeed, otherwise some single entry of S will be left in the end and
will yield a zero result when we take S = 0. In particular, we will get a non-
zero answer for (3.9) only if & = 2p is even. This expresses the Wick theorem for
Gaussian matrix integrals: the integral (3.9) is equal to the sum over all possible
pairings of matrix elements
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1
<Mi1i2Mi3i4"'Mi4p_1i4p> = Z mH6i2j—17i2a(])61‘2]77;20(3')71
J

oc€Sap

E H<Mi2j—17i20(j)Mi2j7i20(j)71>

o€S2p

(3.10)

where each matrix entry appears exactly once in each product. These pairings of
matrix elements of M are called propagators. Let us use this result to evaluate the
coefficients (3.7) of the expansion of Z. We must sum over all possible pairings of
matrix elements of M. Let us represent this sum pictorially as follows. A matrix
element of M will be represented by a double line with a marked end, such that
the first line is oriented from and the second to the mark. These oriented lines
carry a “color” index running from 1 to N, corresponding to the indices of the
matrix entry. The main rule is that an index is constant along an oriented line.
In this notation, the matrix element M,;, propagator (M;; M) and product of
matrix elements M;, ;, M;,i,...M;, i, leading to Tr(M*) by summation over indices
are represented respectively by half-edges, edges and vertices as follows

. . 1
*r—prb— e

- -~

and M, ;. M;

Tyttt

=
i

£

%

Note that the index conservation rule implies that ¢ = [ and j = k in our representa-
tion of propagators: a propagator pairs up two marked double-ends corresponding
to two matrix elements. The coefficient (3.7) is now obtained by summing over all
ways of closing a set of v; i-valent vertices (i = 1,2, 3..) through propagators, thus
creating a closed non-necessarily connected “fatgraph” or “ribbon graph” I'" whose
edges are oriented double-lines. Each such graph contributes a factor 1/N€ to (3.7),
where e denotes its total number of edges. The collection of weights associated to
the vertices and edges of (3.11) are called “Feynmann rules” in physics. Moreover,
the running indices must be summed over {1,2,..., N}, resulting in a factor N*
where L is the total number of loops of oriented lines, also equal to the number
f of faces of the graph. Together with the factor N>¥ = NV, v the total number
of vertices of the graph, this forms an overall factor of N/=¢t? = N2-29 where g
denotes the genus of the graph. In addition, we are left with a product of 1/(i%v;!),
to be summed over various labellings of the same graph, which leads to a factor
1/] Aut(T")| for each graph I'. We finally obtain

1 (T

3.12 Z(V;N) = L —
(3.12) (ViN) > D) 114

fatgraphs T" %

where the sum extends over the non-necessarily connected fatgraphs, and g¢(T'),

v;(T") denote respectively the genus and number of i-valent vertices of T'. To trans-

form the sum (3.12) into a sum over connected fatgraphs, we just have to take its
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logarithm, as is immediately proved order by order in the formal series expansion.

This interpretation extends to multi-matrix integrals as well: if we denote by
Qa3 & symmetric p x p matrix, we may consider the integral over N x N Hermitian
matrices My, Mo, ..., M,:

1
13) Z o VorON) = —— | dM+dMs...dM, e N Tr(V(Mi,....Mp))
(3 3) (Vla‘/% 7‘/207Qa ) ZO(Q,N)/ 1 2 p€
where
P p
(3.14) V(z1, 22, ...y zp) = zﬁ:lgxaQaﬁxg—l—z:lVa(xa)
o,P= a=

for some arbitrary formal series V, ( )=
tion factor ensuring that Z(0,0, ..., 0; Q;
to

> i3 ti,a%i, and Zy(Q; N) is a normaliza-
N) = 1. The reexpression (3.12) generalizes

Z(V1, V2, ..., Vs Qs N)
. 1 2—2¢g(T") 'Ulu ) -1
(3.15) = > Ao Y [Iee 1 Qe s

fatgraphs I' with B0 edges e
p—colored vertices

where the sum extends over the non-necessarily connected fatgraphs I" with ver-
tices colored with colors a = 1,2,...,p, and g(I'), v; o(I') and a(e), 5(e) respec-
tively denote the genus of I', the number of i-valent vertices of color «, and the
colors of the two vertices linked by the edge e. The factors of Q arise from
the straightforward multi-Gaussian average (still denoted (...)) wrt the potential

Vo(z1, ..y xp) = % Zaﬂ TaQa,pxa:
(3.16) <€ (>, SQMQ)> _ eﬁ Zu,ﬁ Tr(SaQ;lﬁsﬁ)

where S,, a = 1,2,...,p are N x N Hermitian matrices. Note that in this picture
the edges (propagators) of I' are naturally bi-colored by the two colors of their
adjacent vertices. As before, the sum over connected fatgraphs is simply obtained
by taking the logarithm of (3.13).

The integral (3.13) gives access to a number of interesting combinatorial results
on enumeration of colored graphs. In the following, we will see that a particular
case of (3.13) with p = 2 matrices yields (upon taking the logarithm) the generating
function (3.1).

What will we have gained in formulating our problem in terms of a matrix inte-
gral? It turns out that matrix integrals can be computed by alternative techniques
using either orthogonal polynomials or discrete bilinear recursion relations or even
a direct expansion method. By exploiting the two last approaches, we will be able
to derive among others the results (3.3)(3.5).

3.3. A Generating Function for Tri-Colored Triangulations. Our main
result will be based on the following matrix representation for Z(z1, z2, x3;t; N) of
(3.2) (3.1). Let us consider the double integral over n x n Hermitian matrices M;
and Mo

VA cu:N) = dM-+dM. —N TrV(Mi,Mz;z1,22,u)
(317) n(l‘l,l‘g,u, ) Sﬁn u, N / 1 2€

V (M1, Ma;x1,22,u) = x1 Log(l — My) + x2 Log(1 — Mz) 4+ uMy My
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where the logarithms are understood as the corresponding formal series expansions
— Log(1—x) =>_,~, "/n, and the prefactor ¢, (u, N) ensures that Z,(0,0;u; N)
= 1. Note that here N can be any real number, unrelated to n, the size of the
matrices. Note also that (3.17) has the form (3.13) up to the change n — N, and
that the quadratic form is just reduced to Q12 = Q21 = u, Q1,1 = Q22 = 0.
For (3.17) to make sense, we must give a prescription for computing the (a priori
ill-defined) “Gaussian” average

(f(My, M2)) = (1/%(%]\7))/dMlszf(Mth)@_N“ Te(MMz),

We choose to define it by use of Feynmann rules derived from those for (3.11),
namely by the two-dimensional formal integral

(3.18) (x%yP) = Nu/dxdye*N”yxayﬁ = I'(a+1)(Nu) %u,p

for any real o, 3 (we have identified ¢1(u, N) = 1/(uN)).

This induces the propagator ((M7);;(M2)k) = dudjr/(Nu). Following the steps
leading to (3.15), we see that Z, (z1,22;u; N) generates a sum over non-necessarily
connected vertex-bicolored graphs I'" (color 1 for M; and 2 for Ms), such that
adjacent vertices have distinct colors (there are only edges coming from propagators
(M1 Ms)), with a weight 1/(Nu) per edge (the inverse of the quadratic form is just
1/u2 times itself), and a weight Nz per vertex of color 1 and Nxg per vertex of
color 2. Note that now the loops of the graph have running indices i = 1,2, ..., n;
hence give a contribution nf to each graph with f faces. Writing n = Nus, this
becomes N7 arg The factors of N therefore conspire to yield the usual N2-29(I)
and we are left with

(3.19)

1
ZuaramaiN) = Y o N0
vertex-bicolored
fatgraphs T"

where n;(T") is the number of vertices of color ¢ in I, f(T") the number of faces of T’
and e(T") the total number of edges of T'.

How can we use this for tricolored triangulations? Starting from a vertex-
bicolored fatgraph I' involved in (3.19), let us create a new vertex, say of color
3, in the middle of each of its faces, and connect it to all the surrounding vertices
by means of new edges. The result is a vertex-tricolored triangulation T, as each
triangular face is adjacent to one vertex of each color 1, 2 and 3. Conversely, any
vertex-tricolored triangulation gives rise to a vertex-bicolored fatgraph by simply
erasing the vertices of color 3. Note that the number of edges in the original bicol-
ored fatgraph I' is equal to A(T')/2, where A(T) is the number of triangular faces
of T, as an edge linking vertices of colors 1 and 2 is adjacent to two triangles in 7.
It is a simple exercise to check that the symmetry group is preserved from I" to T;
hence finally upon setting

n
2 t= = d =
(3.20) " an x3
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we have the identity

Zn(x1,205u; N) = Z(x1,29,23;t; N)

1 A(T)
3.21 = - AN2-29(T) w1 (T),v2(T) s (T)t 3.
(3:2) 2 Taw” Ty

_tricolorable
triangulations T

This identification is actually valid only as that between two formal series of ¢ =
1/u, namely between their coefficients, which are polynomials of (z1,x2, & = 3).
Although n and N only take integer values in the identification, as we only need
a finite number of distinct values to completely specify a polynomial, the analytic
continuation to arbitrary real or complex x3 is immediate.

We may now study the two-matrix integral (3.17).

3.4. Discrete Hirota Equation. A crucial step towards the complete determi-
nation of (3.17) is the reduction to integrals over the eigenvalues of M; and M.
This involves the change of variables M; — (U;, m;) where M; = UimiUJ , U; uni-
tary and m; diagonal n X n matrices. The Haar measure is known to transform
with the Jacobian J(m1,ma) = A(my)?A(mz)?, where A(a) = [Ticicj<n(ai —aj)
is the Vandermonde determinant of the diagonal matrix a. Moreover the only
non-invariant term under unitary conjugation of M; and Ms is the crossed term
Tr(M;Ms). We therefore have

1
Zn(x1, 205u; N) = m/dmldmgA(ml)QA(m2)2

(322) x e N Tr(z1 Log(I—m1)+w2 Log(I—m2)) /dUldU2e*Nu Tr(U3Uymi Uy {Uzms)

where the normalization ¢, (u, N) ensures that Z,,(0,0;u; N) = 1. Introducing the
unitary matrix 0 = U;r U,, we may compute the second integral, which up to an
overall factor depending only on n reads

(3.23) /dQe_N" Tr(QTm1Qma) det (e_N"mlﬂ"m%i)

A(my)A(ms) l<ijsn
where the integral extends over the unitary group U(n), and m; j is the k-th eigen-
value of M;. This is the Itzykson-Zuber formula [21], a particular case of the Har-
ish Chandra and Duistermaat-Heckmann localization formulas [22]. An elementary
proof was given in [21], using the matrix Heat equation. Using the skew-symmetry
of the determinants, this leads to

(3.24)
1
Zp(w1, x50, N) =

— | dmidmsoA A =N Tr(V(m1,m2;x1,22,u))
wn(u;N)/ miams (ml) (m2)6

where the normalization factor 4, (u,n) ensures that Z,,(0,0;u; N) = 1. It is easily
derived by expanding the two determinants as sums over permutations, with the
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result

Yn(u,m) = /dmldmgA(ml)A(mg)e_N“ Tr(mamz)

n
(3.25) = Z Sgn(o-T)H/dm17idm27im517’(il)*1m72"(il)*1e—Num1,im2,i
i=1

0,TESy
oy =)
o n!H (Nu)?
i=1

where we have used (3.18).
We are now ready to derive the discrete Hirota Bilinear equation for Z,,. Writing

1
Zo(ri,20;u; N) = ——— [ A A
(x1,22;u; N) wn(U,N)/ (m1)A(ma)
(3.26) n
X | | e_Numl'iMQ'i(l — mu)_‘“ (1 — m27i)_“2dm17idm27i

i=1

with ap = Nxg, k = 1,2, and using the basic definition of determinants

n

[T - )0 = me) = det [(1 = megy=]

(3.27) i=1 . 1<i,j<n
= Z sgn(o) H(l — my )7 D7t
ocESn =1
for £k = 1,2, and the shorthand notation
(3.28) Zn(ar,a2) = Zp(x1,22;u; N) a1 = Nzi,a2 = Nxo

we finally get

1 n
Zn(ay,az) = ) Z sgn(aT)H/dedmm
AT i=1

0,TESR

(1 _ mLi)cf(i)*mfl(l o m2’i)-r(i)7a27167Num11im2,i

n!
(3.29) = mygg:” sgn(v)

n
H/d.l?dy(l — x)i_al_l(l — y)”(i)—GQ—le—Nu;cy
i=1

where we have set ¥ = 7o ~!, with the same signature as o7, and explicitly fac-
tored out the sum over o. Moreover, the dummy integration variables have been
rebaptized x and y, and the integral can be computed by expanding the integrand
as a power series of z,y and then using term by term the prescription (3.18). The

partition function therefore takes the form
n!
(330) Zn(a/l,ag) = m Dn(a/l,ag)

where Dy, (a1, az) is the n x n determinant

(3.31) Dy(ar,az) = det [/dxdy(l — )T (] — )i e Nury

1<ij<n
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and ¥, (u, N)/n! = D,(0,0) = ngign(i — DI/(Nu)™.

The Hirota equation will be the consequence of the following general quadratic
equation satisfied by the minors of the determinant D of any matrix of size
(n+1) x (n+1). Denoting by D; ; the n x n minor of D obtained by erasing
the i-th row and j-th column, and Dy, ,.5, 5, the (n —1) x (n — 1) minor obtained
by removing the rows i1, 73 and columns ji, j2, we have the quadratic relation

(3.32) DDipytinrt = Dpyins1 D11 — Ding1 Dngan.

This may be viewed as a particular case of the Pliicker relations [20]. Applying
(3.32) to D = Dpy1(ag + 1,a2 + 1), we immediately get

Dpti(ar +1,a2 +1)Dy—q (a1, a2)
(3.33) = D,(a1 + 1,a2 + 1)D,(a1,a2) — Dy(a1,a2 + 1)Dy (a1 + 1, a2)

where we have used the explicit definition (3.31) to rewrite the various minors.
Finally, using ¥y41(u, N)tp_1(u, N)/tbn(u, N)?> = n/(Nu) = nt/N, as a conse-
quence of (3.25), (3.33) becomes (3.3) when expressed in terms of the Z,(a,a’),
and theorem 3 follows.

The equations (3.33) or (3.3) are known as discrete Hirota equations, playing a
central role in integrable systems (see [20] for the general study of these and anal-
ogous equations). We obtain in this way an indirect relation between the foldable
triangulations enumeration problem and integrable systems, a relation intriguingly
reminiscent of that uncovered between lattice folding problems and integrable lat-
tice models.

The Hirota equation (3.3) can be used to generate inductively the expansion
(3.1) through (3.2). Indeed, writing

(3.34) fn(ar,a2) = LogZy(a1,az)

and using the shorthand notation d,f(x) = f(x + 1) — f(z), we can recast (3.3)
into

t
(335) 5(115(12‘]('”(@17 a2) _ _ Log(l _ nﬁeénf7L(a1+17a2+1)76nf7L71(a17a2)).

Now writing the formal ¢ series expansion fy(a1,a2) = >, <1 (t/N)"wy m(a1,a2),
(3.35) is nothing but a non-linear recursion relation for the coefficients Wn,m (a1, az2),
with the initial value wy, 1(a1,a2) = najas (there is only one connected tri-colorable
graph made of A = 2 triangles: those are glued along their edges, and the graph has
one vertex of each color; this graph has genus zero, as indicated by (t/N)naias =
N 2tn$1$2). It involves however a step of discrete integration wrt a; and as, but as
we are dealing with polynomials of n, a1, as, this step is readily done by noticing
that all the wy m(a1,a2) have at least aiag in factor, as there is always at least
one edge connecting two vertices of color 1 and 2 in a given connected tri-colorable
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graph. The first few w’s read

Wn,1 = Naipa2
naia
Wpo = ; 2 (n+ a1 + ap)
naia
W3 = %(n2 +3(ay + ag)n + a2 + 3aiaz + a3 + 1)
naiaz 3 2 2 2
(3.36) wpa = T(n + 6(a1 + az2)n” + (6a] + 17a1a2 + 6a5 + 5)n
+ (a1 + a2)(a? + baiaz + a3 + 5))
Wn5 = %(n4 +10(ay + a2)n® + 5(4a? + 11ayas + 4a3 + 3)n?

+5(ay + az)(2a? + 9aias + 243 + 8)n
+aj + 10aas 4 20a3a3 + 10aya3 + a3 + 1563 + 40a1az + 15a3 + 8).

Note that our solution (3.36) displays the expected symmetry between a; = Nxq,
az = Nxg and n = Nas, from the interpretation of f,, (a1, az)=N?f(x1, 22, 23;t; N)
(3.1) as generating function for vertex-tricolored triangulations. This symmetry was
however absolutely not manifest on (3.35). Note also that the genus expansion of
f can be read off (3.36) by expressing the coefficients as

D (#/N)"wnenagm(ar = Nay,ag = Nag) = Y N*729 f (w1, w2, w33 1),

m>1 g>0

where f, denotes the genus g contribution to (3.1). For instance, we read from
(3.36) the genus one contribution

t3 5
fi(z1,z0,235t) = §$1$2$3 + Zt4$1$2$3($1 + x9 + x3)
(3.37) + t5m1x2m3(3(m% + 2+ x%) + 8(z122 + 2223 + T123)) + ...

the first term corresponding to a triangulation of the torus with 6 triangles, sharing
three vertices, and so on. We may also derive a partial differential equation for
the genus zero part fo(w1,z2,23;t) = UMy oo N72f (21,72, 23;t; N) of (3.1) by
substituting d,, — 05, /N, i =1,2, and 0, — 0, /N into (3.35), which becomes:

(3.38) 0z, 0nyfo = — Log(1 — tagedra(OnF0maF0:0)f0)

This allows for the computation of fy order by order in the t series expansion.

3.5. Direct Expansion and Genus Zero Result. Let us start again from the
expression (3.30) of the previous section, involving the determinant (3.31). Let us
explicitly compute this determinant, by expanding

i—a—1 __ Mx_k
(3.39) (1-2) = kzzo Tl+a—i) &
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for a = a1, as, and then using term-by-term the formal prescription (3.18), which
results in

(3.40)

1Tk4+ar—i+1)T(k+ax—j+1) )k+1

Dn(ar,az) = det — :
(al a2) € [ k' F(1+a1 —Z) F(1+a2—j) (N I<ij<n

- Nk+1r 41
_ Z Hkt/ (ki + a1 — Z+)dt[(ki+a2—j+1)]

kn>0i=1 (1 + a1 —)I'(1 + a2 — 1) 1<4,j<n

where we have used the multilinearity of the determinant to extract line by line the
summations over k’s. Factoring I'(k; + a2 — n + 1) out of each line (number i) of
the remaining determinant, we are left with a determinant of the form

(3.41) det [(kﬁz + as —j)(kﬁz +ax—j— 1)(]% +ag —n+ 1)} = det [qn_j(ki)}

where the polynomials ¢, (z) = z™+lower degree are monic. Using multilin-
earity and the fact that the determinant is alternate, we may easily derive that
det[gy—;(k;)] = det[k] ~1], which is nothing but the Vandermonde determinant of
the k;’s, namely A(k) = A(ky,ko,...,k,). We finally get the expansion of the
determinant (3.31)

A(k).

NFHIT(1+a; — i)D(1 + az — i)

SR (ke +ay — i+ DTk +ag —n+ 1
(342) Do(arar) = Y [[ et 2t DU 02 =0+ )
o kn>01=1

Using the skew-symmetry of A(k), we can also write

1 ol t/]\fk—i_1 (ki—l—ag—n—l—l)
(3.43) Dy(a1,a2) = ) zk: >0}_[1 E!T(14+a; —i) T(1+4as—1)
x Ak ) det[l“(lci +ai —j+1i<ij<n.

Factoring again I'(k; + a1 — n+ 1) off each line (number 4) of the last determinant,
and repeating the above trick, we finally get

(3.44) Dy (a1, a2) :% Z A(k)? H(t/N kiH

" ki,...,kn>0 i=1

(ki+a.—n+1)
'l+a, —1)

or, using (3.30),

n 2
(t/N)kit1=i ['(ki +ar—n+1)
3.45 Z, = Ak _ ’
(3.45) n(ai,az) . Ek: o 1_[1 il k! o (1 +a, —1)

The expansion (3.45) yields the desired genus expansion (3.1) upon the substitu-
tion a; = Nz;, i = 1,2 and n = Nzx3 in the result, once expressed as a polynomial
of n, a1, as. For more efficiency, the sum (3.45) may be reduced to one over strictly
increasing sequences 0 < k1 < ky < k3 < ... < k,,, and yields many interesting re-
sults [18], including a new proof of some earlier result [23], corresponding to the case
x1 = x3 = x3. One of them is the large N, genus zero expansion of fo(z1, 22, x3;t),
solution of (3.38). The large N asymptotics of (3.45) in the saddle-point approxi-
mation show that Z, (a1, as) ~ eN?Jo | and finally lead to the result (3.5) (see [18]
for a detailed proof of theorem 4).

Theorem 4 gives access to the study of the singularities of fy as a series of ¢,
in terms of the parameters x;. In particular, it is easy to show that the series
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displays generically a finite convergence radius, an ordinary feature of quantum
gravity. A last remark is in order: from eqn.(3.5), it appears that F;(z1, zo, x3;t)
is the generating function for vertex-tricolored rooted trees with a root of color i
(such that any two vertices connected with an edge have distinct colors). Our result
links this rather simple function to the generating function of genus zero tricolored
triangulations.

3.6. Folding Foldable Triangulations. Another interesting matrix model serves
as generating function for the edge-tricolored triangulations. It reads

M2

(346) Zedge _ /dMldMQdM367N Tr( ?:1—21—72(M1M2M3+M1M3M2))

where the integral extends over N x N Hermitian matrices. As before, we may
expand (3.46) as a formal power series of z, and compute the coefficient of 2"
as a triple Gaussian integral, by use of the Feynmann diagrams and rules easily
read off (3.46). As only “diagonal” propagators (M;M;) x ¢;; are allowed, the
graphs have cubic vertices only, and edges painted with colors 1,2,3 according
to the corresponding matrix index. Dually, these are nothing but edge-tricolored
triangulations, such that the three edges of each triangular face have distinct colors.
This model is the quantum-gravitational version of the edge-tricoloring problem
solved by Baxter [12] with entropy (2.10), and was solved iteratively in [19].

It is however not the quantum-gravitational version of our triangular lattice fold-
ing problem. Indeed, (3.46) does not extend over foldable triangulations, but over
all triangulations. A correct model for the study of folding of fluid triangulations
should include both the foldability constraint and the edge-tricoloring. The prob-
lem of finding a good matrix formulation of such a model is still open. As a first
hint, let us write a matrix model valid only as far as genus zero results are con-
cerned. We have seen that the foldability constraint in genus zero boils down to the
fact that the triangulations have only vertices of even valency. The suitable modi-
fication of (3.46) to include this constraint goes as follows. Let us restrict ourselves
to matrices of even size N = 2P. Let A = diag(\1, A2, ..., An) be a real diagonal
matrix such that o1 = Tr(A=2¥"1)/N =0 and 6o = Tr(A=2¥)/N are a collec-
tion of non-vanishing real parameters (for instance, we can take \g; = —Ag;—1 =1
for i =1,2,..., P, in which case 3, = 1 for all k). The modified matrix model now
reads

2
(AM;)
2

(3.47) Z told = /dMldMQdM;;e*N (X5, St —2(My My M+ My M3 M)

Repeating the calculation of (3.47) as a formal series expansion of z, we still have
to sum over graphs with only trivalent vertices and connected with edges colored
1,2, 3 corresponding to the propagators

(3.48) (Ma)ij(My)r) = 0ab0i10k -

NN

Indeed, the diagonal quadratic form Q: % Tr(AM)? = %ZQij;lkMiijl has a
diagonal inverse with elements 1/(INA;A;). Note that the factor 1/); in (3.48) can
be thought of as an extra decoration of the oriented line carrying the index i. When
we collect all the factors of N and sum over all indices running over the oriented
loops around each face of the graph, we get a total of NV~¢, v the total number of
vertices, e that of edges of the graph, but from each loop of length ¢ (i.e. made of

£ edges) we now get a factor Zi\il /\i—e. We also get a factor z per vertex. In the
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dual picture, we therefore sum over triangulations with tricolored edges and whose
(-valent vertices receive a weight Tr(A~¢). With the above restrictions on A, we
see that only even vertices are allowed and that they receive a weight N6,. We
finally get

1
(3.49) Z to1d = Z MNZ—ZQ(T)ZA(T) H 0,

edge-tricolored vertices

even triangulations T

where the sum extends over triangulations with even vertices, and each vertex is
weighed by 6y, ¢ its valency. The computation of (3.47) is still an open problem.

More generally, using the colored cluster formulation of the various two- and
higher-dimensional problems that we have addressed, we may always write their
quantum-gravitational version as some multi-matrix models (typically, the increase
in dimension will just result in more matrices and more allowed vertices). The
foldability constraint however will always have to be implemented “by hand”. For
instance, in the case of the two-dimensional square-diagonal folding, we may intro-
duce the quantum-gravitational version of the colored cluster model of Fig.5, in the
form of a matrix integral

Z cluster = /dMldMgdpldPQQ_N Tr V(My,Mz,Py,P2)

1
24
7

E

(3.50) V (M, My, Py, P) M} + P} — (M} + P}')

Il
i

t(M?P? + M;P;M;P;)

I
N | =
M

I
—

]

where the quartic terms represent the vertices of the last line of Fig.5, M matrices
stand for clusters of color 1, P matrices for color 2, and within each color the
matrices M7, Ms stand for the signs +1. This is not sufficient however to formulate
the fluid square-diagonal folding problem. Indeed, we are now considering graphs
made of tessellations with square faces (of long edges), each containing 4 short
edges. As before, foldability implies that there always be an even number of long
edges adjacent to each vertex, hence that in the dual picture each face have an even
valency. We need therefore to modify the propagators in (3.50) in a way analogous
to (3.47), namely M2 — (AM;)? and P? — (AP;)?, with the same A as before.

4. POLYMER FOLDING: MEANDERS

We now address the folding problem of polymer chains. Such a chain is ideally
described by a chain of identical line segments attached by their ends, which serve
as hinges between adjacent segments. Think of a single strip of stamps, which can
be folded along the edges common to each neighboring stamp. We will distinguish
between closed and open polymers according to whether the chain forms a loop or
is open with two free ends. We will be addressing the compact self-avoiding folding
of such objects, namely studying the various ways in which the polymer can be
completely folded onto one of its segments. Note that a closed compactly foldable
polymer must have an even number of segments.
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closed

l

F1cURrE 13. Two compactly folded polymers and the correspond-
ing meanders. The first example is a closed polymer with 8 seg-
ments, and corresponds to a meander of order 8, viewed as the
superposition of two arch configurations of order 8, a and the re-
flection b' of b wrt the river. The second example is an open poly-
mer with 6 segments, and corresponds to a semi-meander of order
7, itself viewed as a particular meander of order 14 after opening
the river. The latter is the superposition of two arch configurations
of order 14, a and the reflection r? of the rainbow diagram wrt the
river. The winding is 3 and corresponds to the number of arches
passing above the source of the river.

4.1. Definitions. To distinguish between the various ways of compactly folding
a closed polymer, we will represent the folded object as a meander of order 2n,
namely a planar configuration of a non-self-intersecting loop (road) intersecting
a line (river) through a given number 2n of distinct points on the line (bridges).
All the intersections are simple, and the meanders are considered up to smooth
deformations preserving their topology. The total number of meanders of order 2n
is denoted by M,,. This number is known to behave for large n as [29] [33]

2n
(4.1) M, ~ B
ne

One of the most remarkable predictions to this day is the exact value of the meander
configuration exponent [36]

29 + V145
o0=———
12

To visualize the relation between compactly folded closed polymers and mean-
ders, it is simplest to imagine drawing a line perpendicular to the segments forming
the folded polymer with a total of 2n intersections (each segment intersects the line
once), and then separating the various segments (see Fig.13).

(4.2)
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In the case of an open polymer with say n — 1 segments, let us attach one
of its ends to a wall or a support (see Fig.13), so as to prevent the polymer from
winding around that end (this is exactly the situation in a strip of stamps, attached
by one end to its support). Starting from a compactly folded configuration, let
us draw this time a circle that intersects each of the n segments once, and also
intersects the support once. Extending the polymer so as to let it form a half-line
with origin its free end, we form a planar configuration of a non-self-intersecting
loop (road) crossing a half-line (river with a source) through n points. These
configurations considered up to smooth deformations preserving the topology are
called semi-meanders of order n (see Fig.13 for an illustration). The total number
of semi-meanders of order n is denoted by M,,. Similarly to (4.1), we have large n
asymptotics

where it is expected that R = R [33] and the semi-meander configuration exponent
is predicted to read [36]

(4.4) 54:1+21—4\/ﬁ(\/3+\/@).

We may also define the winding of a semi-meander as the minimum number of
intersections one has to make when connecting the source of the river to infinity.

A unifying way of considering meanders is to view them as the superposition
of their upper and lower halves, delimited by the river. In a meander of order
2n, the upper half say is made of n non-intersecting arches connecting bridges by
pairs. Such a configuration is called an arch configuration of order 2n. The set of
arch configurations of order 2n is denoted by As,. It is straightforward to show
that [Azn| = ¢, = (2n)!/(n!(n + 1)!), the n-th Catalan number. The lower half
of the meander is also an arch configuration of order 2n, but upside-down, i.e.
reflected wrt the river. The semi-meanders of order n can be viewed as particular
meanders of order 2n by simply opening up the half-line into a line (see Fig.13 for
an example), and by using the semi-meander loop to form the connections in the
upper-half plane between the (now doubled) bridges, whereas the lower-half is just
made of the reflected “rainbow” arch configuration which connects the bridges i
and 2n + 1 — 4. In that formulation, the winding of the semi-meander is simply the
number of arches passing above the former source, now the middle of the river.

This formulation leads to an immediate generalization to multi-component me-
anders (resp. semi-meanders), obtained by superposing any pairs of arch configura-
tions (a, b') (resp. any arch configuration a with r*). The resulting multi-component
meander (resp. semi-meander) has a number ¢(a,b) (resp. c(a) = c(a,r)) of con-
nected components of road. This leads to the introduction of the meander and
semi-meander partition functions of a given order

m2n(q) = Z qc(a,b)

a,beEAzp

(4.5) T (q) PR

a€Aap

also referred to as meander and semi-meander polynomials. As a direct conse-
quence of the definition, we have ma,(1) = (cn)? ~ 42"/(mn?®) and m, (1) =
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FIGURE 14. The tree of semi-meanders, down to order 4. We have
represented the only semi-meander of order 2 as the root. Each
branch corresponds to an operation (I) or (IT). We have indicated
the exterior arches giving rise to the various moves (I). The number
of connected components of a leaf is one plus the number of (II)
moves from the root.

n ~ 4"/ (y/7n®/?), where the large n asymptotics are obtained by use of Stir-
ling’s formula. Note that multi-component meanders or semi-meanders correspond
to compact folding configurations of several possibly interlocked polymers, and the
partition functions (4.5) include a weight ¢ per polymer.

One way of computing the polynomials (4.5) numerically uses an induction pro-
cess within the framework of semi-meanders. Indeed, meanders can be seen as par-
ticular cases of semi-meanders with no winding, so it is sufficient to develop some
induction for semi-meanders. The inductive step will produce all semi-meanders of
order n + 1 from those of order n, and keep track of their numbers of connected
components, winding, and any property we want to analyze statistically. It goes as
follows. We start from a semi-meander .S,, of order n, say the superposition of some
an € Asy and of the rainbow of order 2n, r,. We may now produce semi-meanders
of order n + 1 by adding two bridges along the river (a bridge labelled 0 on the
left, and one labelled 2n + 1 on the right), connected from below by an arch (thus
forming the rainbow 7,11 of order 2n + 2 in its lower half), in either of the two
following ways:

(I) Pick any exterior arch of Sy, i.e. an arch with no other arch passing above
it, say connecting bridges labelled 7 and j, ¢ < j, and replace it by two arches
connecting respectively the bridges 0 to ¢ and 7 and 2n + 1. This operation
preserves the number of connected components of road.

(IT) Connect the bridges 0 and 2n + 1 in the upper-half plane: this adds one
connected component of road (a circle around S,,).

It is easily checked that (I) and (IT) above produce exactly all the semi-meanders
of order n + 1 from those of order n. Note that a given semi-meander of order 2n
gives rise to e + 1 meanders of order 2n + 2, if e denotes its total number of exterior
arches (those adjacent to the infinite face delimited by the upper-half plane and
the semi-meander). We have represented in Fig.14 the tree of semi-meanders, with
the unique semi-meander of order 2 at its root, and we have indicated the branches
corresponding to the operations (I) and (II) above.
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The moves (I) and (II) are easily implemented on a computer. If we look only
for connected semi-meanders, we only have to consider (I), and a typical (Fortran)
program of enumeration would look as follows.

PARAMETER (nmax = 14)
INTEGER A(-nmax + 1 : nmax)
INTEGER Sm(nmax)

maximal order
arch representation
semi-meander counter

INTEGER n current depth (or order)
INTEGER j next branch to visit
DATA n, Sm /0, nmax*0/ n and Sm initialized to 0
A(0) =1 root
A(1)=0
2n=n+1 ! a new node is visited
Sm(n) = Sm(n) + 1
j=-mn+1 ! leftmost (exterior) arch
1 IF((n.EQ.nmax).OR.(j.EQ.n+1)) GOTO 3 ! up or down ?
A(A(G)) = n+1 ! go down with move (I)
Aln+1) = AG)
AG) =0
A(m) =
GOTO 2

3 A(A(-n+1)) = A(n)
A(A) = A(n+1)
j=Am)+1
n=n-1
IF (n .GT. 1) GOTO 1
PRINT (i3, i15)’, (n, Sm(n), n = 1, nmax)
END

going up

next arch to break

Note that we have coded the upper arch configuration of order 2n by labelling its
bridges from —n+ 1 to n, and by a map j — A(j) expressing the other bridge A(j)
connected to the bridge j by an arch. The output is the list of numbers Sm(n) of
connected semi-meanders of order n. The program above manages to visit all the
leaves of the tree of connected semi-meanders. The best estimates of the meandric
numbers using this method can be found in [33] and [34].

Another more powerful method of enumeration was introduced recently in [35],
which is closer in spirit to the methods of integrable lattice models. It is based on
the introduction of a transfer matrix for meanders as follows. Take any meander
with say 2n bridges (see Fig.15 (a), with n = 6). Then cut the meander into
vertical “time-slices”, each containing exactly one bridge, as shown in Fig.15 (a).
We may now construct the set of all meanders by concatenating all possible slices.
More precisely, we represent a portion of meander say to the left of the pth slice
by encoding all the connections of points along the vertical line between the slices
p—1 and p to the left that we may represent by arches connecting points by pairs,
as shown in Fig.15 (b) for the 13 successive “states” into which the meander is
decomposed. When we add the pth slice, this configuration may evolve according
to any of the four possibilities depicted in Fig.15 (¢). We therefore have a simple
matrix connecting various “states”, i.e. configurations of points paired along a
vertical line, through arches drawn on their left. Note that the position of the
river must also be specified on such states. This leads to a natural method of
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FIGURE 15. The transfer matrix for meanders. We have repre-
sented in (a) a typical meander together with its vertical slice
decomposition. The successive corresponding states are listed in
(b). The mechanism of the transfer matrix is as follows: it acts
on the states of (b) in the four possible ways of (c), according to
the structure of the added slice, entirely determined by its local
configuration close to the river. Counting meanders is realized by
iterating this transfer matrix 2n times. In the example of (b), we
must start from the vacuum state 1 and end up with the same
state 13, after concatenating 12 intermediate slices.

enumeration of meanders that is much more efficient than that of hopping on the
tree of semi-meanders. One drawback is that although it is better adapted to the
enumeration of meanders, it is not as efficient with semi-meanders [39]. The best
numerical data to this date are the one-component meander numbers for up to
48 = 2 x 24 bridges [35], multi-component meanders up to 40 = 2 x 20 bridges and
multi-component semi-meanders up to 33 bridges [39)].

Such numerical results give access to good approximations to the large order
asymptotics of the meander and semi-meander polynomial (4.5), namely

(4.6) man(q) ~ C(q)
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with some thermodynamic partition functions per bridge R(q) and R(q) and some
configuration exponents a(gq) and a(g). Comparing with the above-mentioned val-
ues at ¢ =1, we get

(4.7) R(1)=R(1)=4 a(l)=3 a(1)=3/2.

Actually a detailed study of the large ¢ behavior of (4.5), namely the case of a large
number of connected components has led to the explicit form of the few largest
order terms in (4.5), themselves leading to an explicit large ¢ series expansion for
R(q) and R(q), reading [33]

N
X
=
S
Il
Q
4
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+
|
4
|
+

w

98 154 124 10 102 20 64 1
e R i T C“;ii)

This shows a very different behavior between meanders and semi-meanders for
large ¢: the reason for that is the relevance of winding, namely the predominance
within semi-meanders with large numbers of components of configurations with
large winding numbers (typically proportional to n). As the winding is forced to
take the value 0 in meanders, this explains the very different behaviors of R(g) and

R(q).

It has been noted in [33] however that this is true only for g larger than a critical
value g, (computed to be g. = 2cos (m(v/97 — 1)/48) in [36] [37]). In the region
0 < ¢ < g, the winding becomes irrelevant, and we have R(q) = R(q) (see (4.7) for
g = 1). This change of behavior has been identified in [33] as a physical continuous
phase transition. So we expect the large ¢ expansions (4.8) to break down at ¢ = ¢,

which is actually observed on their plots.

4.2. Various Representations. To go beyond numerical work, we will first have
to find a good mathematical representation for meanders and semi-meanders. In
this section we present three very different formulations of the polynomials (4.5):
the first one is purely combinatorial, within the framework of the symmetric group
S..; the second is inspired by matrix model techniques such as those exposed in
Sect.3; the third one combines the idea already obvious from the matrix model
formulation that meanders may be viewed as random graphs or dually as tessellated
random surfaces, expressing the coupling of a certain two-dimensional lattice model
to quantum gravity. The latter approach allows for precise estimates of meander
configuration exponents in the limit of large numbers of bridges.

Symmetric group expression: The arch configurations of order 2n may be rep-
resented, by numbering the bridges 1,2, ...,2n, as permutations of Sy, with only
cycles of length 2, namely elements of the class [2"] (see Fig.16 for an example).
Indeed, each such cycle (i) represents the pairing between bridges ¢ and j. But
not all such permutations are “planar”, i.e. represented pictorially by arch con-
figurations of order 2n. Let us introduce the “shift” permutation 7(i) =i+ 1 for
1=1,2,..,2n—1 and 7(2n) = 1. Then the planarity condition for a given o € S,
translates into the fact that the arch configuration forms a tessellation of the upper-
half plane, with n arches and n + 1 faces, as illustrated in Fig.16 for n = 3. Each
such face is easily seen to correspond to a cycle of the permutation 7o. Hence the
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FIGURE 16. A sample arch configuration of order 6 defines a tes-
sellation of the upper half plane with 4 faces. The correspond-
ing permutation of Sg reads o = (12)(36)(45) € [23]. Each
face of the tessellation corresponds to a cycle of the permuta-
tion 7o = (13)(2)(46)(5), with the correspondence F; — (13),
F2 - (2), F3 — (46) and F4 — (5)

planarity condition is simply that 7o have exactly n + 1 cycles. So we may view
the arch configurations of order 2n as the set

(4.9) Tpp = {0 € [2"]|r0 € [*],> pi =n+1}.

Given a pair of such permutations (o, 0’), the resulting meander’s road components
are described by simply composing the two permutations o and ¢’. A connected
component of road is easily seen to correspond to some cycle of the permutation oo’.
Hence enumerating those cycles amounts to counting the connected components.
Note that each component corresponds to two cycles of equal length, one with
bridges of even labels and one with bridges of odd labels.

In particular, connected meanders correspond to o,0’ € Tb,, such that oo’ €
[n?]; namely the permutation oo’ has two cycles of equal length n, both corre-
sponding to the same unique road.

Matrix model for meanders: In the same spirit as in Sect.3, let us construct
a Hermitian matrix integral that generates the meander polynomials. The com-
putation of such an integral must involve fatgraphs with double-line edges, which
we will eventually interpret as the river(s) and the road(s). Let us paint in white
the “river” edges, and in black the “road” edges. We therefore have a “black and
white” graph made of black and white loops which intersect each other through
simple intersections. To assign a weight say b per black loop (component of road)
and w per white loop (component of river), the simplest way is to use a “replica”
trick: introduce b “black” Hermitian matrices Bi, B, ..., B, and w “white” Her-
mitian matrices Wy, Wa, ..., W,,, all of size N x N, with the only non-vanishing
propagators (allowed edges)

1

(4.10) white edges: (W;W;) = N(Si’j
1

black edges: (B;Bj) = —0;;

N
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and only simple intersection vertices Tr(W;B;W;B;). The case of a unique river
will be recovered by taking the limit w — 0. This suggests introducing the “black
and white” matrix integral

b w
(4.11) Zyo(Niz) = /HdBi [T aw,e- s
i=1 j=1

b w b w
1
VABLAWY) = (D BE+ DY Wi —a) Y BW;BW)).
i=1 j=1 i=1j=1
The corresponding free energy may be formally expanded as a sum over all possible
connected black and white graphs as

1
(4.12) Fp(N;z) = N2 Log Zpy (N x)

1
_ 3 N—29(0) (D) L), Lo (1)
black & white T’ | Aut(r)'

where, as in Sect.3, g(T"), v(I") and Aut(I") denote respectively the genus, number of
vertices, and symmetry group of I', whereas Ly(I") and L,,(I") denote respectively
the numbers of black and white loops of resp. black and white edges in I'. To get
a generating function for meander polynomials from (4.12), we simply have to take
N — oo to retain only the planar graphs (genus zero), and then compute only the
coefficient of w in the resulting expression as a power series of w, which leads to

Fy o (N: © ,.2n
(4.13) lim 2Fbw(N;7) - Zi—mgn(b)
=0 n=1 n

N—o0 ow
where we simply have identified the symmetry group of the resulting meanders to
be Zay, X Zs for the cyclic symmetry (the river forms a loop), and the symmetry
between inside and outside of that loop. Note also that keeping N finite, we get an
all genus expansion

OFy w(N; )
ow

w

(4.14)

= Z N—29 i % m9) (b)
n=1

w=0 g>0

where we have defined the genus g meander polynomials mslg)(b). This leads to a
natural higher genus generalization of meanders.
More generally, we may keep b and w finite and consider the generating function

xQn

(4.15) Fyw(x) = J\Pinoo Fpw(N;z) = Z:l Emgn(b, w)
nz

of the multi-river and multicomponent meander polynomials ma,, (b, w).
Unfortunately, the integral (4.11) has not been calculated directly yet. The best
estimates known to this day [30] involve doing first the integration over say the
W’s, which is simply Gaussian, and then expanding the result as a sum over traces
of products of black matrices, integrated wrt a Gaussian integration measure. This
in turn can be evaluated by use of recursion relations, which have the same flavor
as our initial recursion relations for meanders (see [30] for details).
Meanders as a gravitational Fully-Packed loop model:
In a recent work [36] it has been noticed that the B&W matrix model (4.11)
is the natural random surface (i.e. gravitational) version of some Fully Packed
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(a) (b)

FIGURE 17. The two vertices of the FPL model, up to rotations:
(a) “crossing” and (b) “avoiding”.

loop model on the square lattice. The latter is defined by assigning a color (B or
W) to each edge of the square lattice in such a way that two edges of each color
meet at each vertex. These edges then form (Fully Packed) loops, each of which
is assigned a weight w or b for white and black loops respectively. The model is
called the FPL? (b, w) model [38]. When defined on a random surface of genus zero,
the FPL model assigns colors to the edges of a random fatgraph with only vertices
of the form BW BW (crossing) or BBWW (avoiding) depicted in Fig.17 (a) and
(b) respectively. The B&W model (4.11) does not have the second kind of vertices.
Therefore the original Fully Packed loop model must be further restricted.

The detailed study of the FPL?(b,w) model shows two remarkable facts: (i) it
is critical for all values of 0 < b,w < 2, and (ii) it is represented in the continuum
limit by a conformal field theory with central charge

2 2
(4.16) chL(b,w)—3—6<1e_e+1f_f>

where w = 2cose and b = 2cosmf. This was proved by mapping the FPL2(p, q)
model onto a three-dimensional height model, where the heights are defined in
the center of each face of the square lattice, with an Ampere-like rule prescribing
the transitions from one face to its neighbors, according to the configuration of
the edge crossed. In the continuum limit, the height variable becomes a three-
dimensional free field (conformal field theory with central charge ¢ = 3), and the
corrective weights assigning the factors b and w per loop of each color account for
the correction (4.16) of ¢ by “electric” charges e, f. The fact that this height vari-
able is three-dimensional relies crucially on the vertex-bicolorability of the square
lattice, which allows us to define the above-mentioned Ampere-like rules unequiv-
ocally. To describe the gravitational version of the FPL model, we must replace
the square lattice by an arbitrary four-valent graph that is generically no longer
vertex-bicolorable. This further restricts the height variable to live in two dimen-
sions rather than three, and makes the “avoiding” vertex of Fig.17 (b) irrelevant,
as say the heights in its SW and NE corners are equal; therefore, the two opposite
faces may as well communicate with each other so as to form only one, and the
vertex may consequently be undone. The correct formula for the central charge of
the flat space non-bicolorable Fully Packed Loop theory is therefore

62 f2
c(b,w)—2—6(1_6+ l—f)
(4.17) w = 2cosme
b=2cosnf
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with e, f € [0,1/2] (i.e. 0 < b,w < 2), simply one less than cppr (4.16). We
therefore state that the B&W model is described in the planar (large N) limit by
the gravitational version of a conformal theory with central charge (4.17), namely
the same theory defined on fluctuating surfaces that have to be summed over statis-
tically. Note that the central charge (4.17) is identical to that of the Fully-Packed
model of Sect. 2.6, with $; = b, B2 = w. This latter model is easily seen to be
also a restriction of the FPL?(b,w) model, in which the height variable is forced
to live in two dimensions too. Therefore, in a sense, we are now dealing with the
gravitational version of the square-diagonal lattice phantom folding as well.

The coupling to gravity of a conformal theory with central charge ¢ < 1 has
been extensively studied within the context of non-critical string theory (see the
review [L7] for instance). The gravitational theory has a new parameter z, called
the cosmological constant, coupled to the area of the surfaces we have to sum over.
More precisely, the free energy for a conformal theory coupled to gravity in genus
zero reads

(4.18) F= LogZ=>) a" > Zeopr(T)

A>0 connected surfaces I’
ol area

where Zcpp(T') denotes the partition function of the conformal theory on the genus
zero connected surface I'. Comparing Z with the B&W model partition function
(4.11), we see that = plays the role of cosmological constant, as n = A are the areas
of the tessellations dual to the fatgraphs of the model. When the conformal theory
has central charge c, the free energy (4.18) has been shown to have a singularity of
the form [40]:

1
(4.19) Fe(ze—2)*7 4= E(c—1— (1—2¢)(25—1¢))
when z approaches some critical value x.. This is easily translated into the large
area asymptotics of the partition function of the model on surfaces of fixed area

—A
L

(4.20) Fa~ =

where F(z) =" 45, Faz?.

We have now all the necessary material to compute the configuration exponents
of all the meandric numbers of interest. Applying the result (4.19)-(4.20) to the
central charge (4.17), we find the configuration exponent of the multi-river meander
polynomial (4.15)

R(b, w)*"

(4.21) Man (b, w) ~ (o)

alb,w) =2+ %\/1 — c(b,w)(v/25 — c(b,w) + /1 — ¢(b,w)).

In the particular case of meanders (with one river and one road), we must take
b,w — 0, namely e = f = 1/2, hence ¢(0,0) = —4, which yields the exact meander
configuration exponent

29+ V145
12 '

Analogously, the semi-meander configuration exponent may be obtained by study-
ing the singular behavior of a particular correlation function of the B&W model,

(4.22) a=a(0,0) =
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leading to
1
(4.23) a:1+ﬂ\/ﬁ(x/3+\/@).

Note that the arguments of this section do not give any prediction for non-
universal quantities such as R(b,w) (which is expected to depend on b and w ex-
plicitly, not just on ¢(b, w)). Configuration exponents in physics are usually much
more robust, and keep to the same values within large “universality classes” of
models. An example here of such a class is that of meanders with tangency points:
if we allow the vertex of Fig.17 (b) in the B&W model, say by adding a term of the
form —y 3>, B?W? to the potential V({ B;}, {W;}) (namely allowing for the vertex
of Fig.17 (b), and giving it a weight y), we can now generate meanders whose road
may have tangent contact points with the river, and count them as well. Denoting
by pon,p the number of tangent meanders with one river and one road, 2n crossings
and p tangency points, we have the asymptotics for large number k of vertices

(4.24) > /) panpon ~ %f)k

0<n<k/2

where « is the same for all finite positive values of y/x, equal in particular to its
value at y = 0, the meander configuration exponent (4.22). In physical terms, this
is a manifestation of the irrelevance of the vertex of Fig.17 (b).

The reasonings of this section, leading in particular to the predictions (4.22)
and (4.23), are by no means mathematical proofs, but rely strongly on physical
ideas such as those of the Renormalization Group in field theory, which allow us to
relate critical singularities and exponents to the details of the models, in particular
to their “degrees of freedom” (the height variable here). It would be desirable
to have alternative (and more rigorous!) proofs of these results. Let us however
mention that these predictions are in perfect agreement (up to 4/5 digits!) with
the numerical estimates obtained from the best raw numbers [35] [39].

4.3. Meanders and the Temperley-Lieb Algebra. The most remarkable rep-
resentation of multi-component meanders is realized by using the domino repre-
sentation of the Temperley-Lieb algebra T'L,,(/3) defined in (2.17)(2.19), for 8 = q.
Recall that the elements of T'L,, () are the linear combinations of elementary domi-
nos, obtained by linking their upper and lower lines of n points by pairs, using non-
intersecting curves drawn inside the domino. Such a domino is said to be reduced
if a maximal use of the relations (2.19) has been made to pull the strings and erase
all inner loops. The reduced dominos form a basis of T'L,, () as a vector space.
They are in turn expressible as products of generators (2.17) of the form e;, e, ...€;,
with a minimum number & of terms.

We contend that the reduced dominos of T'L,,(3) are in bijection with the arch
configurations of order 2n, As,. Given a reduced domino, let us open it up as indi-
cated in Fig.18, so as to bring the lower points 1,2, ..,n and upper ones 1/,2/, ..., n’
on a line, in the succession 1,2, ...,n,n/,(n—1)’,...,2/,1". Let us deform the strings
connecting these points by pairs, with the constraint of never creating intersections.
This produces an arch configuration of order 2n, whose arches are the deformed
strings of the domino. Conversely, we can close any arch configuration of order
2n into a reduced domino by bringing half of the bridges, say those numbered
n,n+1,...,2n on the top line of the domino, in the reverse order.
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FI1GURE 18. The bijection between reduced dominos of T'L,(3)
and As, is illustrated in the case n = 7. The domino is cut open
in order to bring its upper and lower points on a line. The strings
are deformed so that no intersection is created. The process is
invertible.

Let us now try to interpret the standard trace (2.22) of T'L,,(3) in terms of arch
configurations. Given a domino d, the trace Tr(d) is simply 8™, where m is the
number of distinct loops formed by putting the domino on a cylinder, in which the
upper and lower points (4,4') are identified. Assume we have two reduced dominos
dy and ds corresponding respectively to the two arch configurations a,as € Ag,.
Let us compute Tr(dydh), where d* stands for the “transpose” of d, namely the
domino obtained by reflecting d wrt its lower line of points. Using the mapping
to arch configurations, and keeping track of the points (which become bridges), we
simply get that

(425) T‘I‘(dldg) _ 6# connected components in Z—i _ ﬁc(ahaz)
as the identifications of points exactly matching that of bridges when forming the
meander equal to the superposition of a; and the reflection of as. This yields a
purely algebraic representation of meanders as pairs of reduced dominos, whose
scalar product (di,ds) = Tr(dids) = (£°(®1:92) measures directly the number of
connected components. In particular, we have

(4.26) man(B) = Y (di.dy).
dj,ds reduced
in TL,(B)

It actually proves more convenient to use yet another representation for meanders
in relation with an ideal of T'La,(8) (note the doubling of n). Let Za, () denote the
left ideal of T'Lo,,(3) generated by the element ejeses...ea,—1. The reduced elements
of this ideal have particularly simple dominos (see Fig.19 for an example): all the
lower points 1, 2, ..., 2n are connected by consecutive pairs 2i—1 « 24, corresponding
to the generators ey, es, ..., ean—1 (2.17) (note that the left ideal property is clear
pictorially as concatenating such a domino with any other domino of T'Ls,, () (from
above), which yields a domino with the same property that lower points are linked
by consecutive pairs). As loops have been erased, this leaves out only dominos
in which the upper points 1’,2’,...,2n’ are connected among themselves by pairs.
This is nothing but the reflection a! of some a € Ag,, as shown in Fig.19. So
the reduced elements of Z,(3) are in straightforward bijection with Asg,. Let us
make the contact with meanders. Taking two reduced dominos di, ds respectively
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Ficure 19. The domino corresponding to the element
esezegegerezeser of the ideal Zg ().

corresponding to aj, as € Ag,, we see that
(4.27) Tr(dydh) = prielena)

where the contribution c(ay,az) comes from the superposition of a; and a’ on the
cylinder, while all the arches connecting consecutive pairs simply form n loops, each
passing through two bridges. This leads to the representation

(4.28) mgn(ﬁ) = Z <d1,d2>
di,d2 reduced
in Zs,(8)
where we have defined (dy, dy) = 3" (d1,ds) = 3°(%1:%2) by use of the scalar product
in TLy,(8). Note that given any two dominos dy,ds in Za,(8), we have dids =
(dy,d3)dy where dy = ejeses...ea,—1 is the “fundamental” domino of Za, (5).

4.4. Meander Determinants. The representation (4.28) suggests the introduc-
tion of the normalized ¢, X ¢, Gram matrix G of the basis of reduced dominos of
Zon(B), namely with elements Gy, 4, = (d1,d2), or by using the bijection between
the d’s and the arch configurations of order 2n:

(429) G(Ll,(LQ - BC(alyaz) ai, az S AQn.

This matrix contains all the relevant data to study meanders and semi-meanders.
In the following, we will sketch the proof of the following remarkable result for the
determinant of G:

Theorem 5. The Gram determinant of the reduced domino basis of o, (8) reads

(4.30) Agn(B) = det(G) = [] Un(B)*=
m=1

2n 2n 2n
Am2n = -2 +
’ n—m n—m-—1 n—m-—2

where Up, (2 cos ) = sin(m +1)0/sin@ are the Chebyshev polynomials of the second
kind.

The determinant (4.30) is called the meander determinant. The result (4.30) fol-
lows from the explicit Gram-Schmidt orthogonalization of G. Before going into this,
let us give yet another representation of arch configurations (or reduced dominos
of Zo,,(B)), as walk diagrams.

A walk diagram of 2n steps is a map h : {0,1,...,2n} — Z, such that h(0) =
h(2n) = 0 and |h(i + 1) — h(é)] = 1 for all . It can be interpreted as a walk of
2n steps of £1 on the half-line Z,, from and to the origin. We may represent
such a walk by its piecewise-linear graph, linking the points (i, h(¢)) in the plane



300 P. DI FRANCESCO

mm <—>/<><>\/\

FiGURE 20. The bijection between As,, and Whs, is illustrated in
the case n = 4. We have represented the box decomposition of the
corresponding walk diagram = hg + ¢34+ ¢4. The corresponding re-
duced basis element of Zg((3) reads ezeqeieseser. The correspond-
ing orthonormal basis element reads p1 2 (e2—p1)(es—p1)ereseser.

(see Fig.20 for an illustration). Let W, denote the set of such walk diagrams of 2n
steps. The sets Ws,, and As, are in bijection. Indeed, if a € As,, let us construct the
map hg : {0,1,...,2n} — Z, by first labelling by 0, 1,2, ..., 2n the portions of river
respectively to the left of the bridge 1, between the bridges 1 and 2, ..., to the right
of the bridge 2n of a. Then h, (%) is defined to be the number of arches passing above
the portion i of river. The condition h,(0) = he(2n) = 0 is clearly satisfied as there
are no arches above the portions 0 and 2n, and h,(i + 1) — hy(i) = £1 according
to whether an arch originates or terminates at the bridge ¢ + 1 (going from left to
right). Conversely, we may use these rules to construct an arch configuration from
any walk diagram (see Fig.20 for an example). In particular, |As,| = [Way,| = cp.

The walk diagrams may be constructed by “box additions” on the fundamental
diagram ho with ho(2¢) = 0 for all i. By box addition we mean the following
transformation. Let h € Ws, with a minimum at position i, namely such that
h(i—1)=h(i+1) = h(i)+ 1. Adding a box to h at position i amounts to letting
h — R, where h'(j) = h(j) for all j # i, and h'(i) = h(i) + 2. We use the notation
h' = h+9¢;. Any walk diagram h has a unique box decomposition expressing the box
additions to be performed as going from hg to h: in Fig.20, we have represented in
thin solid lines the two boxes forming the box decomposition of the walk diagram.
The order in which these box additions are performed does not matter for distant
enough positions 4, j when |i — j| > 1, but it does for neighboring positions. The
reduced dominos of Zo,(f) are constructed inductively as follows. Let d(h) be
the domino corresponding to the walk h € Wa,, (recall the bijection between the
reduced dominos and A,,,). We have

d(ho) = do — €1€3...€2n—1
(4.31) d(h—|—<>z) = e d(h)

The reduced element corresponding to the arch configuration of Fig.20 reads
eseqerezeser, as the box additions are performed at positions 2 and 4.

We are now ready to introduce the Gram-Schmidt change of basis from the
reduced dominos, namely a new basis §(h), h € Wa,,, with

(4.32) §(h) = Y Cuwd()

h'Ch

where the walks h € Wa,, have been partially ordered by inclusion, i.e. A’ C h iff h
can be obtained from A’ by some box addition(s). This triangular change of basis
must also satisfy (6(h),d(h’)) = 0p . It turns out that §(h) can be constructed
inductively in a manner very similar to (4.31). Let us first introduce the notion of
height of a box addition: we say that a box addition A’ = h + ¢; is at height m iff
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FIGURE 21. A sample semi-meander of order n = 8 with winding
w = 2 is expressed as the superposition of two open arch configu-
rations of order 8 with 2 open arches.

m = h(i + 1), and we denote it by A’ = h + ¢;.,. Let us also define the rational

fractions
U
(433) pm = 10 (8) = )

in terms of the Chebyshev polynomials of the second kind. The new basis is then
constructed inductively as

8(ho) = py*do

(4.34) S(h+0im) = /2L (e — ) 5(h).
Hm

For instance, in the case of the arch configuration of Fig.20, we get the orthonormal
basis element py pua(e2— 1) (e4—pi1)e1ezeser. The property (4.32) is clearly satisfied
by construction, and the orthonormality is proved by induction on the numbers
of boxes (see [41] for a detailed proof). The determinant (4.30) follows from a
careful collection of all the diagonal C}, , factors, themselves expressible in terms
of Chebyshev polynomials, to produce det(G) = [, e, Ci. 2.

The meander determinant (4.30) does not however give any direct information
as to the meander polynomials (4.5), rather expressed as sums of entries of G. The
Gram-Schmidt orthonormalization leads nevertheless to some alternative expres-
sions for these polynomials.

As a final remark, note that the meander determinant can easily be generalized
to semi-meanders as follows. Going back to our initial definition of semi-meanders
with a semi-infinite river, we may view a semi-meander of order n and winding
number w as the superposition of two open arch configurations of order n with w
open arches, namely arch configurations in which w of the bridges are un-paired, but
rather connected to infinity through w vertical half-lines, originating from the un-
paired bridges (see Fig.21 for an illustration). When superposing two such objects,
we must identify the bridges, and connect the top and bottom open arches starting
from the leftmost ones, as indicated in Fig.21. By superposing arbitrary top and
bottom open arch configurations of order n with w open arches, we describe the
set of multi-component semi-meanders of order n and winding w. Let us denote by
A, (w) the set of open arch configurations of order n with w open arches (note that
n = w mod 2). It is a simple exercise to prove that

(4.35) [An(w)] = en(w) = (&) - (n;f_ 1)'

2 2
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As before, for any a,b € A,(w), we may introduce the pairing (a,b) = B®?),
where c(a,b) denotes the number of connected components of road in the semi-
meander obtained by superposing a and b'. Let G(w) be the matrix with entries

(4.36) Gw)ap = Y a,be Ay (w).

This is the natural counterpart of the meander matrix G for semi-meanders of
winding w.
The following result for the determinant of G(w) has been obtained in [31], [41].

Theorem 6.

(4.37) det(G(w)) = [] Um(B)om

am,n(w) = W+ WAnt _1,n

2

where the integers am, n extend those of (4.30) to any integer n and half-integer m
such that n + 2m is even, namely

(4.38) Amn = Cp(2m) —cp(2m +2)
with ¢ (w) as in (4.35).

4.5. Generalizations. The meanders can be generalized along two other very
different lines, both using generalizations of the Temperley-Lieb algebra. The first
one is inspired by the theory of integrable lattice models based on sl(NN), whereas
the Temperley-Lieb algebra really is linked to sl(2) in this language. The second
one consists in “coloring” the Temperley-Lieb algebra, namely defining an algebra
generated by dominos with colored strings respecting certain patterns, the Fuss-
Catalan algebras. Both generalizations give rise to generalized meander determi-
nant formulas.

sl(N) meanders: The Temperley-Lieb algebra is the first non-trivial member of
a sequence of factors of the Hecke algebra by the so-called g-antisymmetrizers of
order N, N =2 (TLA), 3, ... . More precisely, the Hecke algebra H,,(q) is generated
by elements 1,7%,T5,...,T,,_1, subject to the relations

(Ti +1)(T; — ¢°) = 0
LT T =TiaTiTiva.
This is a g-deformation (q is a complex parameter) of the braid algebra of the

symmetric group (where T; — (i,7 4 1) and ¢ — 1), and as such it is possible to
define for any o € S,,, the element

(4.40) T, = T, T,,..T;,

where the permutation o = (i1,41 + 1)(i2,i2 + 1)...(%, ik + 1) with a minimal
number k = ¢(o)(=length of o) of factors. Let my be the maximal such length of
the elements of Sy. The g-antisymmetrizers of order N then read

(4.41) AN(Th, T3, ..., TN) = gMy Z (_qz)*E(U)Tg

0ESN+1
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together with the corresponding translations of all the T" indices by 7,7 = 0,1, ...,n—
N — 1. In particular we have

(4.42) AT = q—q¢ 'Y
Ao(T1,To) = ¢ —q(Ty +Tp) + ¢ LW Ty + ToT)) — ¢ *Th T T

for N = 1,2. The N-th quotient of the Hecke algebra H,(ZN)(q) is that of the Hecke
algebra H,,(q) by the ideal generated by the g-antisymmetrizers of order N, namely
AN(T, Tiv1, oy TigN—1), © = 1,2,...,n — N. The algebras H,(LN)(q) play a central
role in the definition of integrable lattice models based on sl(NN). It was actually
shown that A (g¢) commutes with the quantum enveloping algebra U, (si(N)),
acting on a tensor product of n fundamental representations.

It turns out that Hy(bz) (q) = TL,(B3), with 3 = ¢+ ¢~ !. Indeed, defining e; =
A1(T;) = q—q T}, the gq-antisymmetrizer of order 2 simply becomes Yz (e;, e;41) =
Ao(T;, Tiv1) = eieir1€; —e;, while the quadratic relation in (4.39) reads e;(e; —8) =
0. Analogously, we denote by Yn(e;,...,eixn—1) = An(Ti, ..., Tiyn—1). We are
going to generalize the picture of a meander thought of as a pair of reduced elements
of the ideal Ty, (8) = e1es...2n—1T Loy, (5). We introduce the left ideal of H](\,]\Q(q)

n—1
(4.43) W (B) = HYN71(6N1‘+17€N1‘+27~~~7€Ni+N71)H](VAQ((J)~
i=0

A generalized sl(N) meander is a pair of reduced elements of the ideal (4.43). By
reduced, we mean an element obtained as a minimal product of generators e;, mul-
tiplied by the fundamental element Yy = H;:Ol YN_1(ENit1; ENit2, ey ENi+-N—1)-
A simple enumeration of these reduced elements using generalized walk diagrams
gives the dimension of (4.43) as a vector space: dg\],\;) = (Nn)! Hf\i_ol il/(n+1)! (see
[42)] for details). This is known as a N-dimensional Catalan number.

The Hecke algebra quotient Hr(lN) (q) is equipped with a standard Markov trace
such that Tr(1) = Unx—_1(8) (U the Chebyshev polynomials of the second kind),
and

(444) TI'(E(@l, ...,ei_l)ei) = HN—l(ﬁ) Tr(E(el, ...,ei_l))

for any element E involving only the generators ey, €, ..., ¢;_1. Noting that Y'Yy =
YN Yo, with yn11/7% = pn, 71 = p1, we may define the Gram matrix G with
entries

(4.45) Gap = Y% Tr(a'd) a,b reduced.

The determinant of this matrix is the generalized sl(n) meander determinant. It
has been computed in [42], and found to take the form

(4.46) Ann = [ Un(@)*mrn
m=1

where the d,, N, are some integers, related to some path counting on the Weyl
chamber of sl(N) (the generalization of the integer half-line Z). The strategy of
the proof is essentially the same as for the N = 2 case, and relies on the explicit
Gram-Schmidt orthonormalization of the basis of reduced elements [42].

Colored meanders: Coloring the Temperley-Lieb algebra [43] amounts to the
following generalization of the dominos: they must have Nn upper and lower points,
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now colored with IV distinct colors numbered say 1,2, ..., N. The pattern of coloring
of successive upper and lower points is 1,2,3,...., NN, N —1,...,2,1,1,2,3, ... and
ends up with N if n is odd and 1 otherwise. The dominos are further subject to the
N-coloring condition that only points of the same color can be connected by a string,
which is then painted with the same color as its ends. As before, all the points must
be connected through non-intersecting strings within the rectangle of the domino.
To form an algebra, we must define the multiplication of dominos. This is done as
before by concatenation, by identifying the lower points of the first domino with
the upper ones of the second. Then any contractible loop of a given color ¢ may
be erased and replaced by a factor of «;, where ay, s, ...,an are N given complex
parameters. With these definitions, the reduced N-colored dominos (those without
inner loops) form a basis of the N-color Fuss-Catalan algebra F'C,, (a1, as, ..., an).
Enumerating those dominos, one gets the dimension of this algebra as a vector
space: f](vj\;) = ((NZI)")/(NH +1). These are the generalized Catalan numbers. We
clearly have T'L,(8) = FCp(a = ) for N = 1.

This suggests defining the N-colored meanders of order 2Nn to be meanders of
order 2Nn, whose 2Nn bridges are painted according to the above pattern, and
such that only bridges of the same color are connected by arches. In turn, this
describes interlocked polymers of different colors. As before, we will relate the
colored meanders to pairs of reduced elements of some ideal of FCyy,(ayq, ..., an).
First we need to write a system of generators for F'Cy (a1, ..., ). The simplest
presentation is through the embedding into T'L,,(c1) ® T'Ly,(c2) ® ... @ T Ly, (an),
with, in addition to the identity 1 =1 ® ... ® 1, the following generators

1919..010ef ™V g™ g g i odd

4.47) U™ =
( ) ¢ {egl)®e§2)®...®egm)®l®1® ...... ®1 if 7 even

fori=1,2,...n—1,m=1,2,..., N, and where egj) denotes the generator e; of the
j-th factor T'L,, (), corresponding to the strings of color i. The relations between
these generators are direct consequences of (2.19) in each factor (see [44] for the
detailed relations). Let us now consider the left ideal

(4.48) Ton(o,..;an) = UNUN 0N FCop(on, ..., an).

The dominos generating it are very simple: all their lower points are connected
among themselves, the point 2Ni+j of color j being connected with 2N (i+1)
+1—-45,i=0,1,....n—1, 5 = 1,2,..., N. Hence their upper points are all con-
nected among themselves, through N-colored arch configurations of order 2Nn, in
number f](V]\T[L) The basis of reduced dominos is therefore in bijection with these
arch configurations. The trace of the Temperley-Lieb algebra extends trivially to
the Fuss-Catalan algebras. Noting that (Ui(N))2 = arag...anUN

define a Gram matrix GV) of size f](\,]\:l) X ](VAQ with entries

, we may further

(4.49) GEL{? = (arag...ay) "™ Tr(a'b) a,b reduced

called the N-color meander determinant.
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Working out the explicit Gram-Schmidt orthonormalization of the reduced basis

of the ideal (4.48), one finds the following result for the N-color meander determi-
nant

(450)  Ay(a) = ﬁ (Un(0) ™

= () o) 4 (),

We recover (4.30) as the particular case N = 1.

An interesting point is that, while the algebraic structure underlying the si(N)
meanders borrows from known integrable models, that of the N-colored ones ac-
tually gives rise to new two-dimensional integrable lattice models of fully-packed
colored loops [44]. More precisely, the Fuss-Catalan algebra allows for the construc-
tion of new solutions to the Yang-Baxter equation, leading to new integrable lattice
models.

5. CONCLUSION

In this expository paper, we have reviewed various techniques used to study the
folding problem of (phantom) tethered and fluid membranes respectively modelled
by foldable lattices and foldable tessellations. In both studies, we have considered
the folding of two-dimensional objects with the possibility of interpenetrating them-
selves. In both cases, and in a rather unrelated way, we have unearthed some kind
of integrable structure, whether it be simply the integrability of the associated lat-
tice model or a Temperley-Lieb algebra structure in the first case, or the existence
of integrable discrete equations (or integrable partial differential equations, in the
thermodynamic limit) for the second. Both turn out to be intimately linked, as the
Discrete Hirota equations we found can be used to reformulate the Bethe Ansatz
equations of the integrable lattice models [20].

In the third study, we have simplified the object we were folding into a one-
dimensional polymer chain, but we have complicated the folding itself by requiring
that the polymer be self-avoiding and not phantom. The main achievement there
(though the less rigorous one) is probably the predictions for the exact values of me-
andric configuration exponents. These results certainly await mathematical proofs,
but the amount of work they require is probably formidable. Another important
result of our study is the explicit realization of an underlying Temperley-Lieb alge-
bra structure in meanders which provides us with a sort of common denominator
with the preceding two cases.

In addition to the various generalizations of meanders presented here, the most
exciting would really be the self-avoiding folding problem of two-dimensional ob-
jects (even the square lattice is quite elusive, as one can convince oneself easily by
experimenting with a sheet of paper). We expect it to possess some sort of under-
lying generalized Temperley-Lieb algebra structure, which might have to do with
attempts at generalizing the notion of integrability to higher dimensional lattice
models (e.g. such as the so-called tetrahedron equation [5] in three dimensions).
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